Additional Computational Complexity of games Considerations

Kyle Burke

Florida Southern College

Games at Mumbai, January 25, 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Talk Plan

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Algorithmic CGT (ACGT) in general
- Complexity limitations
- CONSTRAINT LOGIC Power
- Value/Addition Complexity

Note: interruptible!

Algorithmic CGT: [DH 2009¹]

How hard is it to play a ruleset R perfectly?

- Main question: Does Left have a win going first on G?
- Equivalent: $G \in \mathcal{L} \cup \mathcal{N}$
- We treat rulesets as computational problems with assumed outcome-class-based question.
- Recursive question: $G' \in G^{\mathcal{L}} : G' \in \mathcal{L} \cup \mathcal{P}$
- Solve "how to win" question with "can I win" questions.
- Need: polynomial fanout. (Common)
- ▶ Polynomial tree height + polynomial fanout \Rightarrow *R* ∈ *PSPACE*

¹"Playing Games with Algorithms: Algorithmic Combinatorial Game Theory", E. Demaine, R. Hearn, 2009

- Assumed outcome-class-based ("winnability") questions:
- "Next player can win?" with role chosen/assumed. (E.g. True in BOOLEAN FORMULA)

$$\blacktriangleright \quad G \in \mathcal{L} \cup \mathcal{N} \checkmark, \quad G \in \mathcal{R} \cup \mathcal{N} \checkmark,$$

$$\blacktriangleright \quad G \in {}^? \mathcal{L} \cup \mathcal{P} \checkmark, \quad G \in {}^? \mathcal{R} \cup \mathcal{P} \checkmark$$

$$\blacktriangleright \ G \in {}^? \mathcal{L} \cup \mathcal{R} \oslash, \ G \in {}^? \mathcal{N} \cup \mathcal{P} \oslash$$

Similar: $G \in \mathcal{N}, G \in \mathcal{L}, G \in \mathcal{R}, G \in \mathcal{P}$ (But, seldom explicitly asked)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

▶ Impartial games get this automatically. $G \in \mathcal{L} \cup \mathcal{N}$ is hard $\Rightarrow G \in \mathcal{N}$ is hard

- ▶ If ruleset R ($G \in R$) is symmetric ($\forall G : -G \in R$ and f(G) = -G is efficient) then two questions are complementary
 - ▶ If I can efficiently determine $\forall G$ whether $G \in \mathcal{L} \cup \mathcal{N}$,
 - Then I can determine whether $-H \in \mathcal{L} \cup \mathcal{N}$,
 - Which is the same as $H \in \mathcal{R} \cup \mathcal{N}$,
 - Which, if false, means $H \in \mathcal{L} \cup \mathcal{P}$.

Most rulesets are symmetric. (Not always e.g. HNEFATAFL)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

EXPTIME

- Can be solved in exponential time.
- ▶ PSPACE \subseteq EXPTIME
- Actually known: $P \neq EXPTIME$
- Stronger results! Harder reductions. Fewer rulesets?
- Usually loopy games. Tree height no longer polynomial.
- ▶ hard vs. complete: R is X-complete means R is X-hard and $R \in X$.
- ► EXPTIME-hard actually means need exponential time.
- Some PSPACE-hard results could be improved to PSPACE-complete or EXPTIME-complete. (More options.)

- Fun research problems!
- Accessible for advanced undergrads.
- ACGT also includes finding algorithms to solve games in polynomial time!

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Image space of the reduction.

- ▶ $Img(f) = \{H \mid H = f(G), G \in BOOLEAN FORMULA\}$ "Image" or "Image positions"
- Reachable? What are R's starting positions?
- Actual played/implemented geometry?
- Likely to encounter? Distance to played positions? Measurable?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Enormous size blowup.

Image not always reachable.

- Is there a sequence of plays from starting positions to image?
- \blacktriangleright Maybe not. E.g. COL w/ two adjacent same-color vertices
- Papers published with this all the time. (Probably me!)
- ▶ ... and that's okay! Still means no algorithm A(G) that returns whether $G \in \mathcal{L} \cup \mathcal{N}$ for general positions G.
- Rulesets are (probably) 4-tuples: (States, optns_L, optns_R, Start)
- ▶ Enforced that *States* must be followers of *Start* elements?
- Not addressed: usually obvious, or not mentioned, or Start not defined.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Do image positions use actual position geometry?

- Does the image exist in implemented games?
- \blacktriangleright E.g. NoGo on grids², but reduced graphs aren't grids.

- ▶ I publish these often. Never seen NoGo on general graphs.
- ▶ Cool: general graphs \rightarrow planar graphs \rightarrow hex grid \rightarrow grid
- Maybe you can show NoGo is hard on grids!

²That's what I did: http://kyleburke.info/DB/combGames/noGo.html 🗉 🗠 🔍

Image positions likely in (good) play?

- Will the image exist in played game? (No!)
- Dream world: "Magnus Karlsen's move at this event in 2022 created result of reduction from some G."
- Other problems:
 - Would be easy for one player to avoid (and avoidance would be beneficial)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- High concentration of placed pieces "away" from action.
- Still okay to publish. Criticism is rare. Can we even measure "distance" to played positions.
- Reduction is still evidence that game is likely hard.

Image boards are enormous.

- Similar to arguments about Galactic algorithms.
- ▶ No one is going to play ATROPOS on 30 × 30 boards.
- ► This is all hardness reductions! Always a blowup.
- > Yes, submit your result for publication! Please!

There is more to criticize than normal hardness results. I want to know what you found out!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Sometimes you can't get all the gadgets

- **E**.g. reducing from BOOLEAN FORMULA, get:
 - Variable and Wire gadgets
 - And and Or gadgets
 - Split and Join wire gadgets
 - But no negations.
- ► Try Constraint Logic [HD 2009³]
- Generalized directed graph game with flippable edges

³"Games, Puzzles, and Computation", R. Hearn, E. Demaine, 2009. E Same Same

► Constraint Logic:

- Played on a directed graph
- Arcs have weights 1 and 2.
- Each vertex must always have "inflow" of at least 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Goal edges: flip to win.
- Multiple versions for complexity classes.
- Two-player version: Edges belong to one player each.
- Non-loopy: each edge can only be flipped once.
- "Bounded 2-Player Constraint Logic", B2CL

- ▶ B2CL is PSPACE-complete
- ▶ CONSTRAINT LOGIC: circuit-like game, without negations
- Simplifies PSPACE reductions:
 - Only need up to degree 3 vertices.
 - ▶ Don't need to implement all vertex combinations. For B2CL:

Like gates: inputs on bottom, outputs on top Names: CHOICE, AND, SPLIT, OR, VARIABLE

 Skip B2CL details completely, and just implement those 5 gadgets and Goal edges (and maybe wires)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Planarity is free!

B2CL used on many combinatorial games

- ► AMAZONS, KONANE, CROSS-PURPOSES[HD 2009⁴]
- ▶ Planar COL, FJORDS[BH 2019⁵]
- ► FORCED-CAPTURE HNEFATAFL[BT⁶]
- Start with book: Games, Puzzles, and Computation, Demaine and Hearn.

⁴"Games, Puzzles, and Computation", R. Hearn, E. Demaine, 2009. ⁵"PSPACE-complete two-color planar placement games", KB, R. Hearn, 2019

⁶"Forced-Capture Hnefatafl", KB, C. Tennenhouse, preprint (E) (E) (E) (C)

Main CGT: Can we evaluate position by evaluating parts?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Disjunctive sum: Break into independent parts.
- Evaluate those parts

Add the values together to get total value.

▶ E.g.
$$2 + * + \pm 1 \in \mathcal{L}$$

-6 + *4 ± 10 ∈ \mathcal{N}

Pretty easy to add these values together.

- When is it hard to add values together?
- One "level" from switches: Switch-like games

► E.g.: {
$$4 \pm 1 \mid -5 \pm 4$$
 } = { { $5 \mid 3$ } | { $-1 \mid -9$ } }
{ { $4.5 \mid -2.5$ } | { $-1 \mid -5$ } } = { $1 \pm 3.5 \mid -3 \pm 2$ }

Sums are complicated.
{
$$4 \pm 1 \mid -5 \pm 4$$
 } + { $1 \pm 3.5 \mid -3 \pm 2$ }

- "Shallow sums" shown to be intractible!
- ▶ Morris 81^7 → Yedwab 85^8 → Moews 93^9 → Wolfe 2000^{10}
- Sums of $\{ x \mid \{ y \mid z \} \}$ are PSPACE-complete

- ▶ Sums of $\{ x \mid \{ y \mid z \} \}$ → PSPACE-complete
- Polynomial number of summands
- Hard games can be either: single deep games or sums of shallow games.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- From before: complexity of determining outcome class.
- ► UNDIRECTED GEOGRAPHY ∈ P (Neat matching algorithm) [FSU 1993¹¹]
- Even deeper: complexity of determining value.
- ▶ Deciding whether G ∈ UNDIRECTED GEOGRAPHY = * PSPACE-complete [BFT 2022¹²]

¹¹"Undirected edge geography", A. Fraenkel, ER Scheinerman, D. Ullman, 1993

¹²"Winning the War by (Strategically) Losing Battles: Settling the Complexity of Grundy-Values in Undirected Geography", KB, M. Ferland, S. Teng, 2022

- ► How? Reduced GEOGRAPHY \rightarrow sum of *+ UNDIRECTED GEOGRAPHY $G \in \{*, *2\}$
- ► To win: need to distinguish between * and *2.
- ▶ PSPACE-hard to determine between values in \mathcal{N} .
- ▶ Image: BINARY UNDIRECTED GEOGRAPHY¹³ Let's play!

¹³http://kyleburke.info/DB/combGames/twoBUG.html⊴→ < ≧→ < ≧→ ≧ ∽ へ ?

▶ Reduction: GEOGRAPHY→ BINARY UNDIRECTED GEOGRAPHY

Local vertex and edge transformation + *

Closing

- Reasonable arguments against complexity
- CONSTRAINT LOGIC is very useful!
- Sums of shallow partizan games are hard
- Easy winnability does not imply easy values

Thank you!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ