
Game Computational Complexity Basics

Kyle Burke

Florida Southern College

Games at Mumbai, January 23, 2024



Acronym

Games At Mumbai (GAM _ _)
I Evenly Symmetric?
I w/Easy Steps?
I w/Easy Rules?
I Extra Spicy?



Talk Plan

I ACGT: Algorithmic Combinatorial Game Theory
I Describe PSPACE and QSAT
I Reductions and Complexity
I Show reduction: QSAT → Geography
I Computational Complexity of Col and NoGo.
I Broader landscape of games.

Note: interruptible!



ACGT

I Big Question (outcome classes): Who is winning? Who is
the winner?

I How hard is it to determine the winner?
I How hard is it to compute the winner?
I How long does an algorithm run to compute the winner?
I How long does the best algorithm run to compute the winner?
I How long does the best algorithm run to compute the winner

in the worst cases?
I How does that change as the size of the game position grows?
I We want to be thinking about the last version of this question.



QSAT

I Let’s start off with a game! Boolean Formula:
I Players: True vs. False
I Position:

I List of variables with assignments: (True, False, Unassigned)
I Formula in Conjunctive Normal Form (CNF).

I Turn: Current player picks value for the next unassigned
variable: True or False. Can’t move if the formula is already
obviously won by other player, or if the move would cause such
an assignment.

I Normal Play: If you can’t make a move, you lose.
I Let’s try playing: http:

//kyleburke.info/DB/combGames/booleanFormula.html

http://kyleburke.info/DB/combGames/booleanFormula.html
http://kyleburke.info/DB/combGames/booleanFormula.html


QSAT

I True wins going first exactly when the QSAT problem is true
I QSAT:

∃x0 : ∀x1 : ∃x2 : ∀x3 : ∃x4 : ∀x5 :

(x0 ∨ x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4) ∧ (x0 ∨ x2 ∨ x3) ∧ (x3 ∨ x4 ∨ x5)

I QSAT is canonical PSPACE-complete problem.



QSAT

I PSPACE: the class of all (T/F) computational problems that
can be solved with a polynomial-amount of read/write space.

I Note: no restriction on the amount of time.
I Every problem in PSPACE can be reduced to QSAT in

polynomial-time.
I ∀X ∈ PSPACE : ∃f : X → QSAT where:

I ∀x ∈ X : x is a true instance of X ⇔ f (x) is a true instance of
QSAT .

I f runs efficiently
I These transformations, reductions, are important in

determining what problems can be solved.



QSAT

I What can we say about two problems, X and Y where there’s
a reduction f : X → Y ?

I What happens if there’s an algorithm, B, that solves problem
Y in polynomial time?

I Then there’s an algorithm that solves X in polynomial time:
I A(x) :

y := f(x)
return B(y)

I Polynomial + polynomial = polynomial
I By contrapositive, if there’s no efficient algorithm for X , then

there’s no efficient algorithm for Y .
I “Hardness follows a reduction.”

“Easiness salmons a reduction.”



QSAT

I There are reductions from everything in PSPACE to QSAT.
I PSPACE-complete: QSAT is among hardest problems in

PSPACE. (Best known algorithms are exponential.
“Intractable”.)

I Boolean Formula is also PSPACE-complete.
I That’s good for games!
I Players use approximation, randomness, and heuristics instead

of certainty.
I CGT: hardness/completeness results are positive instead of

negative.



Geography

I Geography is another PSPACE-complete game!
I Played on a directed graph with a token on one vertex.
I Turn: move the token along an arc; can’t ever return to the

vertex left behind.
I Impartial Game: both players always have same options.
I Normal Play: Lose if there’s no outgoing edges.
I Let’s Play!

http://kyleburke.info/DB/combGames/geography.html

http://kyleburke.info/DB/combGames/geography.html


Geography

I Why is Geography PSPACE-complete?
I There’s a reduction!

f : Boolean Formula→ Geography [Schaefer 781]
I (Very common first PSPACE-reduction.)
I Two steps: variable choosing, then evaluation.
I Note: could have Boolean Formula choose all variables,

then evaluate.

1“On the complexity of some two-person perfect-information games”, T
Schaefer, 1978



Geography

I Reduction: need to find a working function f .
I Reductions usually constructive, so we’re building

Geography instances.
I Needs to work for any Boolean Formula.
I Not onto: doesn’t need to create every Geography position.



Geography
s

x0T F

x1T F

x2T F

...

xnT F



Geography

s

x0T F

x1T F

x2T F

x3T F

(x0 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3)

C0

C1



Geography

I ∀G ∈ Boolean Formula : True wins going first on G ⇔
First player wins on f (G)

I Computational Hardness follows a reduction
I Boolean Formula is PSPACE-complete ⇒ Geography

is PSPACE-complete.
I Now we can reduce from Geography.
I What about other rulesets?



Rulesets in PSPACE

Boolean Formula Node Kayles

Snort

Geography

Hex Domineering

Constraint Logic

Col

NoGo

Fjords

Amazons

Konane

Clobber

Brussels Sprouts Undirected Geography



Col

I Let’s do another one: Col:
I Players: Blue vs. Red
I Position: Undirected graph, with Red, Blue, and unpainted

vertices.
I Turn: Current player chooses an uncolored vertex and paints it

their color. You’re not allowed to pick a vertex adjacent to one
already painted your color.

I Normal Play: If you can’t make a move, you lose.
I Created in 1976 (or earlier) by Colin Vout. (Mentioned in On

Numbers and Games)
I Let’s try playing on a grid:

http://kyleburke.info/DB/combGames/col.html

http://kyleburke.info/DB/combGames/col.html


NoGo
I NoGo:

I Players: Black vs. White.
I Position: Undirected graph, with Black, White, and unpainted

vertices.
I Turn: Current player chooses an uncolored vertex and paints it

their color. You’re not allowed to paint a vertex that creates a
connected component of either color that isn’t adjacent to an
empty vertex.

I Normal Play: If you can’t make a move, you lose.
I Created in 2005 by John Moore. (Called “Anti-Atari Go”.)

I Let’s try playing on a grid:
http://kyleburke.info/DB/combGames/noGo.html

http://kyleburke.info/DB/combGames/noGo.html


Reduction: Col to NoGo

I Let’s relate these with a reduction!
I f : Col→ NoGo. [BH 20192]
I Blue wins (going first) on Col position c

m (if and only if, or “exactly when”)
Black wins (going first) on NoGo position f (c).

I “Local” reduction...

2“PSPACE-complete two-color planar placement games”, KB, R Hearn,
2019.



Reduction: Col to NoGo

I Can describe this locally: vertices and edges.
I Vertices:

f ↓

x

x x x

↓

x

x

↓

x



Reduction: Col to NoGo

I Edges:
f

→ba ??

I What can we add so a and b can’t both be white? What can
we add so they can’t both be black?

a b



Reduction: Col to NoGo

I Put them together:

a b



Reduction: Col to NoGo

I Example on a graph.



Reduction: Col to NoGo

Boolean Formula Node Kayles

Snort

Geography

Hex Domineering

Constraint Logic

Col

NoGo

Fjords

Amazons

Konane

Clobber

Brussels Sprouts Undirected Geography

Pos-CNF

P ⊆ PSPACE

Many: “On the complexity of some two-person perfect-information games”, T Schaefer, 1978.

Hex: “Hex ist PSPACE-vollständig.” S. Reisch, 1981.

Others: “Games, Puzzles, and Computation” R. Hearn, E. Demaine, 2009.

And: “PSPACE-complete two-color planar placement games.”, KB, R. Hearn, 2019.



Closing
I PSPACE-completeness (or harder) is good
I Find a reduction from PSPACE-complete ruleset to target

game. (Not the other way around!)
I Fun! Building game boards.
I Different levels of reductions. Easy: play anywhere. More

complicated: Play spaces in order.
I Common paper pattern: here’s a new ruleset that’s

interesting... and here’s the complexity.
I Unknown: Chomp, Sprouts, Clobber, Domineering,

Gorgons (Sprouts 20243 game)
Also, please be aware of FUN 20244: June 4-8. Submission
deadline: Feb 20.

Thank you!

3http://kyleburke.info/sprouts/sprouts2024/
4https://sites.google.com/unipi.it/fun2024

http://kyleburke.info/sprouts/sprouts2024/
https://sites.google.com/unipi.it/fun2024

