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Useful notation

players Left/black/blue/Louise, Right/white/red/Richard
∗n A nimber, equivalent to a NIM heap of size n

∗
{

x1, x2,… , xk
} The options of an impartial game

mex Smallest excluded non-neg. integer
TT Tweedledum-Tweedledee Strategy, wherein one player

mirrors the other’s moves
z# or G =# z Equals integer z by counting moves.
G = {L|R} Game w/ left options L and right options R

G +H The disjunctive sum of two games; players can choose
which game to play on their turn
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⇑ ↑ + ↑
↑∗ ↑ + ∗
 Everything > 0 including ↑, etc.
 Everything < 0 including ↓, etc.
 Next player to move loses, values are zero
  ext player to move wins, fuzzy with zero

A NIM heap
nn
S

A position in SUBTRACTION with set S
∥ Confused with/incomparable
∦ Not confused with
<∥ Less than or confused with
∥> Greater than or confused with
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Preface

Status of this text

This text is a work in progress. The authors’ intention has always been to release
it freely to students, faculty, and self-learners. You can download the most recent
version from the book’s homepage: http://kyleburke.info/CGTBook.php.
If you are an instructor and would like a copy of the solutions manual in its en-
tirety then please email the authors from your university affiliated email address
with your request along with a link to your official university webpage or profile.

Obviously we would be delighted to hear feedback from anyone using this
book, either as a learner or an instructor. Errata, organization notes, remarks on
the notation we’ve chosen to use, etc. are all welcome. And instructors, please
let us know if you’ve chosen to use this text in whole or in part for a course you
are teaching.

Notes for Instructors

This text has grown (and continues to grow) out of the love the authors share for
Combinatorial Game Theory and undergraduate mathematics. While there are
myriad texts that focus on Discrete Mathematics, and no dearth of great texts on
CGT, we noticed a lack of texts aimed at leading early undergraduate mathemat-
ics and computer science students through the world of Combinatorial Games.
Discrete Mathematics books tend to focus solely on Discrete Mathematics, while
CGT books are usually aimed at more experienced students.

For a Discrete Math Course: Our goal is to teach the fundamental material
from a typical early undergraduate course in Discrete Mathematics in the context
of Combinatorial Game Theory. In particular, CGT is an excellent framework
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Preface

within which one is exposed to Graph Theory, Inductive Proof, Formal Logic,
and nearly every other topic in an introductory course on Discrete Mathematics.

In the table below, we have included what we believe to be the most important
topics from such a course (left), which we have connected to CGT topics (right).

Graphs Functions/Probability
Coloring COL Bijective

Injective Birthdays
Cartesian product Surjective
Connectivity Game sums
Digraphs Recursion Game values
Paths

Discrete probability Dice
Trees Expected value
Bipartite
Cycles Graph games
Eulerian
Hamiltonian
Matchings
Logic Set theory
Normal form AVOID TRUE Cardinality Birthdays
Truth tables Countability
Constructive proof CHOMP Cartesian product Game sums
Connectives Game trees
Contradiction Inequalities DeMorgan
Operators Nim sums Intersection
Quantifiers Nimbers Set builder Game trees

Subtraction
Direct proofs Union
Indirect proofs throughout
Inductive proof
Number theory Sequences
Binomial coefficient Cards Fibonacci FIBONACCI NIM
Multiplication principle Beatty WYTHOFF NIM

Modular arithmetic Game trees Arithmetic
Infinite series Game values Characteristic roots
Infinitesimals Infinitesimals Geometric Game values

Polynomial
Solving recurrences
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In a single semester course for students without a Discrete Mathematics back-
ground, we note that most Discrete Mathematics material can be covered by the
material that focuses on Impartial Games, Non-combinatorial Games, and Graph
Games, while topics like Partisan Games, Values, Strategy, Infinitesimals, etc.
can be covered at the instructor’s discretion without missing out on important
Discrete Mathematics topics.

For a Games Course: This text can be used for a CGT1 course for students
who have already had Discrete Mathematics. In this case, the Math Diversions
can simply be skipped, as well as any chapters deemed unnecessary. (This text is
designed to be used for both courses, either independently or in sequence.)

Topic Pre-requisites: We also provide a flowchart of pre-requisites between
chapters, so advanced readers can pick and choose the CGT topics that interest
them the most:

1Or any math games.
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Chapter 0:
Impartial Games

Chapter 1:
Impartial

Graph Games

Chapter 2:
Partisan Games

Chapter 3:
Values

Chapter 4:
Strategy

Chapter 5:
Non-

combinatorial
Games

Chapter 6:
Game Properties

Chapter 7: CGT
Beyond
this Book

Examples and Exercises: Throughout this text, we push examples first, be-
lieving that this is most helpful for students to learn new concepts. This may
seem odd for an intro text in formal mathematics. Aligned with this, we pro-
vide answers to many of the exercises in the student version of this text in the
appendix. Exercises with answers are marked with a star (⋆), which also acts as
a link directly to the solution in the PDF version of this. Each exercise indicates
whether the answer is given, so take note when choosing these for assignments.

As we improve this book and add material, we may add new exercises in the
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middle of the exercise lists. We apologize in advance for any renumbering that
this may cause! (Since we’re offering this text for free, we’re certainly not doing
this to purposefully obviate older editions.) We will avoid changing the avail-
ability of these answers whenever possible, and be even more averse to revealing
previously-hidden answers.
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Introduction

Welcome to the wonderful world of Combinatorial Games! We are excited to in-
troduce people to this fascinating subject that combines our love of playing games
with the study of discrete math. We hope the use of combinatorial games helps
students enjoy the discrete topics here and motivates further study in math, com-
puter science, and maybe even advanced CGT (Combinatorial Game Theory).

Unfortunately, the meaning of the word “game” is a bit ambiguous in Combi-
natorial Game Theory (CGT). It can refer to any of these things:

• First, it could refer to a ruleset, meaning the rules for a game. E.g. “I really
enjoy playing the game HEX.” In this book, we will study many different
rulesets, and we provide a compilation of all of the rules in the appendix,
section A.

• Second, it could refer to a game position, meaning a state of a game being
played. E.g. “What is Blue’s best move in this game of CLOBBER?”

• Third, it could refer to the sequence of positions chosen during a game
between two opponents. E.g. “Louise and Richard played a game of NIM
yesterday.” We can instead refer to this as a game path.

Because of this ambiguity, it’s common for people to avoid using the word
“game”. In this text, we do the same whenever possible. We will instead use
ruleset, position, or game path to differentiate. The reader should understand
that in spoken dialogue about CGT, the word game is used all the time, as in
the examples above. In most cases the actual case is clear from context, but
gamesters1 are happy to clarify should there be any confusion. Always feel free
to ask the question: “What do you mean by the word ‘game’?”
1Gamester is the term for someone who studies CGT.
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0. Impartial Games

It don’t matter if you’re black or white

- Michael Jackson, “Black or White”

Let’s jump right into a game. We name our two players L and R, after Louise
and Richard Guy1. Conveniently, these are also the first letters in the words Left
and Right, which we will use as pseudonyms for L and R throughout.

SUBTRACTION
SUBTRACTION is a game played on a heap of tokens. Each turn, the current
player can remove either 1, 2, or 3 tokens from the pile, provided enough
tokens exist. When the pile is empty there are no available moves. In this
text, we will use a fancy number script to denote a subtraction position,
e.g. 55 for a subtraction game with five tokens. Sample game:

66 → 55 → 33 → 00
Starting from a pile of 6, the first player takes one, then the second player
takes two, then the first player takes all three to win the game.

1Richard Guy is one of the three authors of Winning Ways for your Mathematical Plays [1],
along with Elwyn Berlekamp and John H. Conway.
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0. Impartial Games

Activity: Play SUBTRACTION
Play SUBTRACTION with a friend (or enemy). Whichever player takes the
last token is the winner. It’s okay to be competitive, but the main objective
should be to figure out which player has a winning strategy from different
starting amounts of tokens. You may have to play multiple times from the
same place to try out different strategies. If you’re both okay with it, you
can allow backing up instead of starting over completely.
Try playing from starting piles of 5, 10, 15, and 20 tokens. Who has a
winning strategy in each of these cases? If you have extra time, try other
pile sizes.

The convention of winning used above is known as normal play. Other ways
to think of this are:

• Last play wins.

• If you can’t play, you lose.

• If you don’t play, you lose. This accounts for forfeits.

It is possible to use other winning conventions2 so we won’t specify who wins in
our ruleset definitions, just when the game ends.

2There are many other common conventions! Inmisère play, the last player to play loses instead
of wins. Other conventions are less focused on which player plays last. In scoring play, the
players keep track of a score and the player with the highest score wins at the end. In maker-
breaker play, one player is trying to attain some goal and the other is trying to prevent it. In this
book, we focus only on normal play, but all are valid ways of playing combinatorial games.
In many cases, the way we analyze games here doesn’t extend to other play conventions,
however. New theory is needed; all are active research areas.
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0.1. Impartial Game Trees

Who wins? Who can win?
Throughout this text, it would be burdensome to write “Player X has a
winning strategy” or “Can player X win, no matter what their opponent
does?” Here are some synonymous sentences:

• X can force a win when going first.
• Assuming they play optimally, X wins going first.
• X has a winning strategy going first.
• No matter what their opponent does, X can win going first.

Instead of using any of these lengthy phrases, we will just write “Player X
wins”. (Or, in question form, “Does player X win?”) Although there may
be some scenarios in which a player could lose, we will drop the implicit
part and assume optimal play.

You might already see the pattern of first-player vs. second player wins in
SUBTRACTION. We would like to develop some more tools that will help us in
our study of games.

0.1. Impartial Game Trees

I can see clearly now the rain is gone. I can see all
obstacles in my way.

- Johnny Nash, “I Can See Clearly Now”

Wewould like some tool to show all the possible options from a single position,
then include all the moves, or options, from those and so on. A natural way to
do this uses a tree-like structure, where branches extend downward instead of
upward (sorry, Nature).

3



0. Impartial Games

Each position on the tree is drawn as a node. For our impartial game trees,
we will use only horizontal and vertical lines, so options will be included under
positions as a downward-facing pitchfork.

Math Diversion: Graphs, Digraphs, and Trees
A graph is a collection of nodes (also called vertices) and edges. Usually
when we talk about graphs we’re concerned with simple graphs, where there
is at most one edge between a pair of vertices and no edge joins a vertex to
itself. Graphs are useful tools for examining pairwise relationships among
sets of discrete objects, like friendships, computer architecture, and chemical
interactions.

If G is a graph then its order n(G) is its number of vertices. The number
of edges, e(G), is the size of G. If G is connected then between any two
vertices u, v of G there is a shortest path. This is the smallest collection of
successively adjacent vertices from u to v, and the path’s length is its number
of edges. The distance from u to v is the length of a shortest path. We denote
the set of vertices and edges of G as V (G) and E(G), respectively, and we
often write uv ∈ E(G) or u ∼ v to denote that u is adjacent to v.

A tree is a connected graph where there’s exactly one path between any
two nodes. Sometimes we designate a root. A vertex with only one neighbor
is a leaf, while other vertices are called internal vertices. An internal vertex
has child vertices, which are siblings of each other, just like in a family tree.
A tree with n nodes always has size (n − 1).
The level of a node in a rooted tree is its distance from the root. The root

is at level 0, its children are at level 1, etc. Nodes in a non-rooted tree have
no level.

How many different unrooted trees can you come up with on 6 nodes?

A:.Therearesixdifferenttrees,includingapathon6nodesandastar,
whichisasinglecenternodewiththeremainingnodesadjacenttoit.

What are the least and greatest possible number of leaves in an unrooted
tree of order n?

4



0.1. Impartial Game Trees

A:.Atreewithnnodescanhaveasfewastwoleaves(apath)oras
manyas(n−1)nodes(astar).

Sometimes we want to represent not only whether or not a relationship
exists between a pair of nodes, but also some hierarchical information about
the relationship. For example, if the nodes represent species as in a food web,
then we want to orient the edge to show which species preys on the other. An
oriented edge is called an arc, and a graph with arcs is called a directed graph
or a digraph. If the nodes represent game positions, then we may choose to
orient the arcs from positions to their options so that we can follow the arcs
from the root to a leaf to represent a game.

Math Diversion: Logical connectives
We can use logical connectives to abbreviate mathematical statements. Some
of themost common are and (denoted∧), or (∨), not (¬), and the conditional
if/then (→). We can put these together into statements like this:

(P ∧Q)→ R

which we read as “If P and Q are true, then so is R.” We can also use them
to make claims:

For any x ∈ ℝ(¬(x = 0))→ there is some y(xy = 1)
What does the above statement say? Is it true?

A:.“Foranyrealnumberx,ifxisn’tequalto0thenxhasamultiplica-
tiveinverse.”Thisisatruestatement.

Write your own example of a true mathematical statement using at least
two logical connectives.

For example, this shows the top two levels of an impartial game tree for SUB-
TRACTION starting with a heap of size 5:

5



0. Impartial Games

55
443322

That is only part of the game tree. We can continue it by drawing the options
from the positions that are there. If we draw all of the options for each position
(all the way down to 00 ) then we get the complete game tree:

55
44

33
22
11
00

00
11
00

00
22
11
00

00
11
00

33
22
11
00

00
11
00

00
22
11
00

00

Options are new positions that a player can move to directly. In a more general
way, followers are positions that can be reached after one or more moves. For
example, 11 is a follower of 55 , even though it’s not an option of 55 . (All
options of a position are also followers of that position.)

Moving from a heap of 1 to 0 is clearly a winning move, as there are no options
from 00 . We could consider coloring (or otherwise marking) the nodes of the
tree to mark whether they are wins for the next player or not. E.g. we could mark
the zeroes purple and the ones, twos, and threes green. You may already see how
we could mark the 4 and 5-nodes. We won’t give that away here, but we will
show how to do it in Section 0.2.
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0.1. Impartial Game Trees

You probably realized earlier that you could win in SUBTRACTION as long as
you didn’t have a pile that was a multiple of four. Another way to say this is that
losing positions are piles that are equivalent to zero modulo four, i.e. that when
the pile size is divided by four the remainder is zero. In general, n ≡ r (mod k)
means that both n and r have the same remainder when divided by k. We can
similarly describe our winning positions in this way:

n ≡ 1, 2, or 3 (mod 4)
which just means that you can win as long as the remainder of n when divided

by 4 is 1, 2, or 3. This is called modular arithmetic and you’ve probably been
using it ever since you learned to tell time. Modular arithmetic comes up often
in Combinatorial Game Theory because many of our solutions will be periodic,
i.e. repeat following a pattern. We will see more of this in later sections.

What if we want to play SUBTRACTION, but we want players to be able to
choose from a different set of numbers? We can update our definition to use any
numbers by providing a different set. We describe that after a quick primer on
sets.

Math Diversion: Sets
A set is a collection of elements. It could be a finite set, like

{4, elbow,,}

an infinite set, like
{a, b, aa, ab, ba, bb, aaa, aab, aba, abb,…}

or even an empty set {}, denoted ∅. A set never has the same element ap-
pear more than once, nor does the order of elements matter. So the set
S = {2, 6, 2, 3} is the same as the set T = {6, 3, 2}. When we
want to say that an element is in a set we use ∈ or �, so 2 ∈ T . We can
also look at subsets of a set, denoted A ⊆ B. These are the sets made up of
some, none, or all of the elements in another set. So {2, 6}, ∅, T ⊆ T , among
others. Some common sets you may be familiar with are the natural numbers

7



0. Impartial Games

(ℕ = {0, 1, 2,…}), integers (ℤ = {… ,−2,−1, 0, 1, 2,…}), the real numbers
(ℝ), the rationals (ℚ), and the complex numbers (ℂ).

We can also write sets using set-builder notation. The set {x ∈ ℤ | x >
0} is read “The set of all x in ℤ such that x is positive.” We sometimes
abbreviate this set as ℤ+ or ℤ>0.Can you write out the set of all subsets of S?

A:.{{},{2},{3},{6},{2,3},{2,6},{3,6},{2,3,6}}

How could you write the set of even integers using set-builder notation?

A:.{2x|x∈ℤ}or{x∈ℤ|x(mod2)=0}

There are also some operations we can use on sets to create new sets. If A
andB are sets then their intersectionA∩B is the set comprised of all elements
in both A and B. For example, if E is the set of even natural numbers and T
the set of all multiple of three, then E ∩ T is the set of all multiples of six.
The union of A and B, denoted A ∪ B, is the set of all elements that are in
A, or B, or both. So {1, 2, 3} ∪ {2, 4} = {1, 2, 3, 4}. The difference of A and
B, A ⧵B, is the set of all elements of A that are not in B. Going back to our
previous example, T ⧵ E is the set of all odd multiple of three. And finally,
the complement of A, Ac or A, is the set of absolutely everything not in A.
Let X = {1, 2, 3, 4, 5, 6} and Y = {2, 4, 6, 8, 10}. What are X ⧵ Y , Y ⧵

X,X ∪ Y , and X ∩ Y ?

A:.X⧵Y={1,3,5},Y⧵X={8,10},X∪Y={1,2,3,4,5,6,8,10},
andX∩Y={2,4,6}

You should convince yourself that
(A ∪ B)c = Ac ∩ Bc

and that
(A ∩ B)c = Ac ∪ Bc

These are well-known as DeMorgan’s Laws for sets.

8



0.1. Impartial Game Trees

SUBTRACTION
SUBTRACTION is a game played on a heap of n tokens, with a specified
set of positive integers (ℤ+) known as the subtraction set. Each turn, the
current player chooses a number k from the set such that k ≤ n, and then
k tokens are removed from the heap. When n is lower than all elements
of the set, there are no more moves and the current player loses. We will
describe each position using the fancy number script as before (e.g. 66 )
or by also including the subtraction set below if it’s not understood from
context (e.g. 66

{1,5,6}
).

99
{1,2,4}

→ 77 → 33 → 11→ 00
The first player takes two tokens to move to a heap of 7. The second

player then takes four tokens to move to a heap of size 3. Taking three is
not in the subtraction set, so the first player instead takes two, and the

second player responds by taking the final token to win.

We can refer to the version we played in the Introduction as SUBTRACTION-
{1, 2, 3}.

Let’s see how fun this game is when played with a different set!

Activity: Play (updated) SUBTRACTION
Play SUBTRACTION-{1, 2, 4} with a friend . Again, the main objective for
you both should be to figure out who wins from different starting amounts
of tokens.
Try playing starting with 5, 10, 15, and 20 tokens. Who wins in each of
these cases? Is it easier or harder to figure out who wins than in the version
with the set {1, 2, 3}?
If you are enjoying this, try playing with another set you think will be
“easy” and another set you think will be “hard”. Were you and your friend
correct in your hypotheses?

9



0. Impartial Games

Exercises for 0.1
⋆ 0) S = {x ∈ ℕ | x > 5 and x < 10}. Rewrite S without using set-builder
notation. (Answer 0.1.0 in Appendix)

⋆ 1) S = {2k + 1 | k ∈ ℕ ∪ {0} and k ≤ 6}. Rewrite S without using set-builder
notation. (Answer 0.1.1 in Appendix)
2) S = {x ∈ ℤ | |x| < 4}. Rewrite S without using set-builder notation.
3) S = {b + 1 | b ∈ ℤ and b < 5 and b > 10}. Rewrite S without using
set-builder notation.
4) S = {2k | k ∈ ℤ and |

|

k|
|

≤ 3}. Rewrite S without using set-builder notation.
5) S = {x ∈ ℕ | x > 3 and x < 5}. Rewrite S without using set-builder
notation.

⋆ 6)Draw the first two levels of the impartial game tree from 33
{1,2,3}

. (Your diagram
should show the initial position and all the options from that position.) (Answer
0.1.6 in Appendix)
7)Draw the first two levels of the impartial game tree from 22

{1,2,3}
. (Your diagram

should show the initial position and all the options from that position.)
⋆ 8) Draw the first two levels of the impartial game tree from 44

{1,2,3}
.(Your diagram

should show the initial position and all the options from that position.) (Answer
0.1.8 in Appendix)
9)Draw the first two levels of the impartial game tree from 66

{1,3,4}
. (Your diagram

should show the initial position and all the options from that position.)
⋆ 10) Draw the entire impartial game tree for 22

{1,2,3}
. Is there a winning move for

the first player? Justify your answer. (This is a continuation of 0.1.7 .) (Answer
0.1.10 in Appendix)

10



0.1. Impartial Game Trees

11) Draw the (impartial) game tree for 33
{1,2,3}

. Is there a winning move for the
first player? Justify your answer. (This is a continuation of exercise 0.1.6.)

⋆ 12) Draw the impartial game tree for 44
{1,2,3}

. Which of the two players (first or
second) has a winning strategy from the pile of 4? Justify your answer. (This is
a continuation of exercise 0.1.8.) (Answer 0.1.12 in Appendix)

13) Draw the (impartial) game tree for 44
{2,3}

. Which of the two players (first or
second) has a winning strategy from the pile of 4? Justify your answer.

⋆ 14)What are all of the followers of 33
{1,3}

? (Answer 0.1.14 in Appendix)

15)What are all of the followers of 55
{2,3}

?

16)What are the losing positions (for the first player) whenwe play SUBTRACTION-
{2, 4, 6}? Write your answer using modular arithmetic.

⋆ 17) If x ≡ 3 (mod 5) and y ≡ 1 (mod 5), then what is x + y (mod 5)? (Answer
0.1.17 in Appendix)

18) If x ≡ 3 (mod 5), y ≡ 3 (mod 5), and z ≡ 3 (mod 5), then what is x + y +
z (mod 5)?

⋆ 19) How do a natural number and its square compare under arithmetic (mod 2)?
i.e. are n and n2 always equivalent (mod 2), always non-equivalent (mod 2), or
sometimes equivalent and sometimes not? (Answer 0.1.19 in Appendix)

20) How do a natural number and its square compare under arithmetic (mod 3)?
i.e. are n and n2 always equivalent (mod 3), always non-equivalent (mod 3), or
sometimes equivalent and sometimes not?

11
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0.2. Impartial Outcome Classes

Activity: Subtraction Winnability Table
Play SUBTRACTION-{1, 2, 6} with a friend. See if together you can figure
out which player wins from each starting pile size. Copy down this table,
check the first entries, then fill in the missing ones. (If this is an in-class
activity, how many extra entries can you get to before your teacher asks
everyone to stop?)

Size 0 1 2 3 4 5 6 7 8 …
Winner 2nd player 1st 1st 2nd 1st ? ? ? ? …

For any position, exactly one of the two players has a winning strategy: either
the first player (the next one to play) or the second player (the previous one).
“First” and “Second Player” are often used in an all-encompassing way (e.g. “the
first player to take a turn this game.”) instead of relative to the current game
position. Because of this, in CGT, we instead say “ ext” and “revious” to
refer to the two players based on who is currently considering their turn. Then
we define two sets:

•  : {G | revious player wins G }
•  : {G | ext player wins G}

For example, 33
{1,2,3}

∈ , while 44
{1,2,3}

∈  .
We refer to these sets as outcome classes. It is also common to refer to games

in  as -positions, and  games as  -positions. We can rephrase the table
from the beginning of this section to use this new notation:

Size 0 1 2 3 4 5 6 7 8 9 …
Outcome class      ? ? ? ? ? …

We can determine the outcome class of an impartial game position with the
following recursive rule:

12



0.2. Impartial Outcome Classes

G ∈

{

 , All of G’s options are in 
 , G has an option in 

It might be easier to think of it in this (equivalent) way:
G ∈

{

 , G does not have an option in 
 , G has an option in 

This means we can use a game tree to find the outcome class of each node!

Math Diversion: Recursion
There are a number of ways to get one mathematical result from another.
One method is called recursion. A relationship that is defined by recursion
is called a recurrence relation. For example, we can define a function that
takes a natural number and multiplies it by the value of the function on the
previous natural number, written like this

f (n) =

{

2 n = 0
n ⋅ f (n − 1) otherwise

We have just defined a recursive function. Notice that we also have to state
what happens when n = 0. This is called the base case of the recurrence
relation. Otherwise it’s impossible to know what f (1), f (2), or any other
value is.

Take a minute to determine what f (5) is.

A:.f(0)=2,f(1)=1⋅2=2,f(2)=2⋅2=4,f(3)=3⋅4=
12,f(4)=4⋅12=48,f(5)=5⋅48=240

Our outcome class labels are also recursively defined. Each node’s label
in a rooted tree is determined by the labels of its children. We’ve also estab-
lished that a node without any children is assigned the label  .

As another example, let’s define a function g on ℕ by

g(n) =

{

1 n = 0 or 1
g(n − 1) + g(n − 2) otherwise

13



0. Impartial Games

What is g(5)?

A:.g(0)=1,g(1)=1,g(2)=1+1=2,g(3)=2+1=3,g(4)=
3+2=5,andsog(5)=5+3=8.Thismaybefamiliartoyouasthe
famousFibonacciSequence.

Let’s look at an extremely simple impartial game tree and label each node with
its outcome class.

All nodes with no children have no options, so they don’t have any options in
 . That means they themselves are in  . Let’s label that node.



Then, since that top node has an option in  , it falls into the category.




This is very useful. We can determine the outcome class of a game just by
looking at its game tree! If we draw the tree, we don’t even need to know how
the rules otherwise work.

Let’s do one more example:

14



0.2. Impartial Outcome Classes

All nodes with no children become  :





 

Then, working upwards, the remaining node on the second level is in :






 

Finally, we can also label the top , because it has (at least) one  option:







 

Computational Corner: Running Time
When analyzing the speed of a function, we can’t give an exact running time
(e.g. in microseconds) because that will change with respect to the size of
the function’s inputs. We also can’t express it as a function of that size in a
specific unit of time (e.g. 9n microseconds) because that will change based
on the hardware and operating system we run the code on.

Instead, we express the running time as a function of the number of steps it
requires in the worst case on a given size. Then, when we use Big-O notation
to classify running times, we drop the coefficients of terms as well as non-
dominant terms.a

15



0. Impartial Games

For example, this function finds themaximum element in a list of numbers:
def max(numbers):

maximum = numbers[0]
i = 0
while i < len(numbers):

number = numbers[i]
if number > maximum:

maximum = number
i += 1

return maximum
In the worst case (each element is a new maximum) max uses 6n+ 5 steps

in its execution, where n is the length of numbersb. Using Big-O notation,
we classify this as a O(n), or linear, function. This tells us that the running
time increases linearly with the length of the list.

In general, we will not go so far as to find the actual number of steps, then
classify with Big-O. Instead, we will skip to Big-O by considering specific
instructions inside of loops. In the max example above, we can count the
comparisons inside the loop. The check if number > maximum is run once
every time through the loop. There are no other instructions deeper in the
function that happen more often. There are also no other functions (aside
from len) in the loop or elsewhere in the function that might have a more
complicated running time on their own.
aWe are glossing over a ton of the theory behind this practice. See https://en.
wikipedia.org/wiki/Computational_complexity_theory or any text on algo-
rithm analysis for more information. We are also choosing to use Big-O instead of Big-
Θ, though the latter is arguably more appropriate.

bYou can verify this calculation in exercise 0.2.9 . We count the execution of len as only
taking one step, though it certainly takes more.

Computational Corner: Python Outcome Classes
Let’s consider determining outcome classes in Python 3. If we are program-
ming quickly, we can model each outcome class as a string with a single
character, either ’N’ or ’P’. Then, given a list of these, we could write a
function to determine the overall outcome class that could be used like this:
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0.2. Impartial Outcome Classes

>>> out = get_parent_impartial_outcome_class([’N’, ’P’, ’N’])
>>> out
’N’
>>> out = get_parent_impartial_outcome_class([’N’, ’N’, ’N’,
’N’])
>>> out
’P’
>>> out = get_parent_impartial_outcome_class([])
>>> out
’P’

Here is an example of how we could write that function:a
def get_parent_impartial_outcome_class(option_classes):

expected_class = ’P’
for option in option_classes:

if option == ’P’:
expected_class = ’N’

return expected_class
This function’s loop requires it to check every option. We shouldn’t have

to do that, however! If we see a  option, we can cut out of the function and
return . Here’s how we can rewrite the function to do that:
def get_parent_impartial_outcome_class(option_classes):

expected_class = ’P’
for option in option_classes:

if option == ’P’:
return ’N’

return expected_class
And, then, since we are never changing expected_class, we can drop

that variable:
def get_parent_impartial_outcome_class(option_classes):

for option in option_classes:
if option == ’P’:

return ’N’
return ’P’

aWe use the variable option instead of class because class is a keyword in Python.

17
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Computational Corner: Recursive Functions
Instead of having an ’N’ or ’P’, we could recursively have another list that
represents those options. That list could contain either characters for the
outcome classes (’N’ and ’P’, as we’ve been doing) and other lists. For
example, what if we were asked to evaluate the list [’N’, [’N’, ’N’],
[’P’]]?

We can modify our previous code to be recursive. If we see a list, we’ll
make a recursive call.
def get_parent_impartial_outcome_class(options):

for option in options:
if isinstance(option, list):

option_class = get_parent_impartial_outcome_class(option)
option = option_class

if option == ’P’:
return ’N’

return ’P’
Notice that this doesn’t fit the normal basic structure of a fruitful recursive

function:
if base_case:

return base_case_value
else:

#maybe do some work
result = recursive_call()
#maybe do some work
return something

This is because we may be making a bunch of recursive calls as we have
to iterate through the entire list.

Exercises for 0.2

⋆ 0)What is the outcome class at the root of this impartial game tree?

18



0.2. Impartial Outcome Classes

Justify your answer by labeling the nodes of the tree. (Answer 0.2.0 inAppendix)
1)What is the outcome class at the root of this impartial game tree?

Justify your answer by labeling each node of the tree with its outcome class.
⋆ 2)What is the outcome class at the root of this impartial game tree?

Justify your answer by labeling each node of the tree with its outcome class.
(Answer 0.2.2 in Appendix)
3)What is the outcome class at the root of this impartial game tree?

Justify your answer by labeling each node of the tree with its outcome class.
4)What is the outcome class at the root of this impartial game tree?

19
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Justify your answer by labeling each node of the tree with its outcome class.
⋆ 5) Let G = 33

{1,2,3}
. What is the o(G)? Justify your answer by drawing the game

tree and labeling each node with its outcome class. (This is a continuation of
exercise 0.1.11.) (Answer 0.2.5 in Appendix)
6) Let G = 44

{1,2,3}
. What is o(G)? Justify your answer by drawing the game tree

and labeling each node with its outcome class. (This is a continuation of exercise
0.1.12.)

⋆ 7) Find the outcome class of this tree:

Then add one new child to one of the leaves to flip the outcome class at the
root of the tree. (Yes, you need to show the work to derive the outcome class of
the new tree.) (Answer 0.2.7 in Appendix)
8) Find the outcome class of this tree:
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Then add one new child to one of the leaves to flip the outcome class at the
root of the tree. (Yes, you need to show the work to derive the outcome class of
the new tree.)

⋆ 9)Verify that the max function in this chapter requires 6n+5 Python instructions
to run. Assume that the len function takes one step to complete. (Answer 0.2.9
in Appendix)
10) Consider this (incorrect) version of our function to determine a position’s
outcome class.
def get_parent_impartial_outcome_class(option_classes):

expected_class = ’P’
for option in option_classes:

if option == ’P’:
expected_class = ’N’

elif option == ’N’:
expected_class = ’P’

return expected_class
Find a list where this returns thewrong thing and explain why that happens. Fix

this by replacing one line with the Python command pass, which does nothing.
11) In the practice of Defensive Programming, it’s a good idea to check for un-
expected values and throw an error if you see them. Consider this version of our
function from before:
def get_parent_impartial_outcome_class(option_classes):

expected_class = ’P’
for option in option_classes:

if option == ’P’:
return ’N’

elif option != ’N’:
... your code here...

return expected_class
Finish this by raising an exception in the empty branch.3

3More information about errors can be found here: https://docs.python.org/3/
tutorial/errors.html.
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0.3. Trimming Game Trees

When drawing out an impartial game tree, there are often some reasonable short-
cuts we can employ to avoid analyzing the entire tree.

First, when we’re determining the outcome class for a position, we are only
concerned with whether each position has a -option or not. If we find one, then
we don’t need to continue evaluating the other options. For example, consider
this incomplete evaluation of 33

{1,2,3}
:

33
22
⋮

00
11 

00


Even though the game tree for 22 isn’t fully drawn out and evaluated, we still
know the outcome class of 33 because we found an option in  . This trimmed
game tree still proves that 33 is in  .

In the above example, there was only one option of 33 left after finding the
-option, but if we found it sooner, then we wouldn’t need to analyze any of the
remaining options. In that case, we can note that there are multiple options left
unexplored by using a horizontal ellipse (dots) instead of a vertical one:

33
…00



Some important notes about this shortcut:
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0.3. Trimming Game Trees

• First, we can’t use this trick for -positions. We still need to evaluate all
of their options to show that none of them are  themselves.

• Second, this trick is only useful for determining outcome classes. In later
sections, when we are finding game values, then we can’t stop just because
we see a specific option.

For the second shortcut, if we have drawn out the subtree for a position else-
where in the whole tree, we don’t need to draw it again. For example, consider
this game tree for 55 :

55 

44 

33
22 

11 

00


00


11 

00


33 

22 

11 

00


00


11 

00


00


22 

11 

00


00


The tree for 33 isn’t derived on the far right side. Since it was already done
out in the table, we know it’s already in  without repeating the work. Notice
that we can simplify this further by doing the same with 22 and 11 .
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55 

44 

33

⋮

22

⋮

11

⋮

33 

22

⋮

11

⋮

00


22 

11 

00


00


This is a legitimate truncation of the tree. Even though we’ve removed somuch
of the original tree, it is still a valid diagram proving that 55 ∈ .

Exercises for 0.3

⋆ 0) Use a trimmed game tree to find and show the outcome class of 66
{1,3,4}

. (This
is a continuation of exercise 0.1.9.) What is the smallest tree you can draw that
proves your result? (Answer 0.3.0 in Appendix)
1) Use a trimmed game tree to find and show the outcome class of 66

{1,5}
.

⋆ 2)Use a trimmed game tree to find and show the outcome class of 55
{1,3}

. (Answer
0.3.2 in Appendix)
3) Use a trimmed game tree to find and show the outcome class of 55

{2,3}
.

⋆ 4)Use a trimmed game tree to find and show the outcome class of 99
{2,3}

. (Answer
0.3.4 in Appendix)
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0.4. Game Sums

5) Use a trimmed game tree to find and show the outcome class of 1010
{2,3}

.

6) Use a trimmed game tree to find and show the outcome class of 1111
{2,3}

.

⋆ 7) Use a trimmed game tree to find and show the outcome class of 99
{2,4,5}

. (An-
swer 0.3.7 in Appendix)

8) Use a trimmed game tree to find and show the outcome class of 1414
{2,4,5}

.

0.4. Game Sums

Let’s look at the ruleset for a new game.

KAYLES
KAYLES is a bowling game created by Henry Dudeney in 1908[], derived
from the lawn game Skittles. Each turn, players bowl a ball towards a row
of bowling pins that may include some gaps. The ball can either knock
over (remove) a single pin or two adjacent pins. Removed pins leave gaps
in the row. The game ends when all pins have been removed.

→ →

The first bowl takes out the second and third pins, the second bowl
removes only the fifth pin.

In the sample game, the moves bowling in the middle separate the position into
two separate components. These two parts are independent of each other; on each
player’s turn, they pick one of the components and make a move on that side.

As another example, starting with a row of five pins, , bowling
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down the second pin results in . In this new position, the sections
are independent of each other. Although the moves a player makes on one side
may affect the moves the other player will (or should) respond with, those moves
will not affect the state of the other side directly.

We can use this idea of independent components as the basis for an addition
operator on positions. For this “game sum” 4, we use the familiar + operator. For
any two positions, G andH , G +H is a game position where the current player
picks either G or H (not both) and makes a move in one of them5. The result
of that move is the sum of the resulting component from the move and the entire
original other position. That means that if a player chooses the option, J , of H ,
the resulting overall game is G+ J . If they instead were to choose an option, say
F , of G, then the resulting overall game would be F +H .
Continuing with our previous example, = + ,

playing on the left side results in removing that single pin and leaving the three
on the right. Playing instead on the right results in the one pin on the left added
to whatever that move on the right side leaves.

We are not restricted to considering game sums between positions in the same
ruleset! What if we add 11

{1,2,3}
to ? Let’s check out the game tree. But,

before we do, here are two rules about how we will treat completed positions
(with no moves):

• First, when a position occuring as part of a sum has nomore moves, we will
just drop that component. For example, we will simplify 00 + as

.
• Second, some rulesets don’t have a great visual representation for positions

with no options. We will represent these with a zero: 0. For example, the
only move on is to 0.

4More formally, “disjunctive (game) sum”. There are other ways to define sums on games, so
the word disjunctive is usually only used in the context of other sums.

5We will see a more formal definiton of game sums in section 2.1.
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Here’s the game tree:

11 +

11

00

11 +

11
000

0

0
This tree is larger than the trees for the individual components:

11

00
0

0
This explosion in size is extremely important. The focus of much of this book

is learning how to analyze the components individually rather than the sum all at
once. If we can do that, then we’re using a sort of divide-and-conquer strategy:
break apart a position into its independent components, analyze those parts, then
use that analysis to reason about the whole position.

We can already do some of that analysis with the tools we have so far. Consider
the positions 22

{1,3}
(in ) and (in  ). What is the outcome class of their

sum? Let’s use a game tree:

27



0. Impartial Games

22 +



22


22 +

22 

11


11 +


11 +

11


11 +

11 

00






0




0


The sum is in  . It turns out that whenever we add a -position to an  -
position, the result is always an  -position! In the same way, if we add two -
positions, the sum is another-position (see this section’s exercises). -positions
always act like the number zero in sums of games. For that reason, the official
name of  is “Zero”.

 doesn’t have quite the same effect. The sum of two  -positions could be
either or  . For example, the sum of these two trees is  :

However, the sum of these trees is still :
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For this reason, is named “Fuzzy”.
H

G +H  

G   
  ?

Thus far we have explicitly used trees to represent options in a game. However,
there is no reason to restrict ourselves in this way. Notice above that there are
multiple nodes representing the position 11 + . The subtrees that follow these
nodes are identical. We can combine these nodes into a single node and repeat
the process for every position that is repeated in the tree. What results is a game
graph, and it usually requires fewer nodes than a game tree.

Math Diversion: Graph products
The Cartesian product (named for René Descartes) of two sets A and B is
defined as

A × B = {(a, b) | a ∈ A, b ∈ B}

That is, the collection of ordered pairs where the first term comes from A
and the second term from B. Cartesian coordinates in the plane, with which
you’re already familiar, are elements of ℝ ×ℝ. You may also have seen this
represented as ℝ2.

We can also take the Cartesian product of a pair of graphs. Let G and H
be graphs. The Cartesian product of G and H (sometimes just called the
product) is denoted G□H . Its vertices are the ordered pairs V (G) × V (H),
and it has edges between (g1, ℎ1) and (g2, ℎ2) whenever g1 = g2 and ℎ1 ∼ ℎ2,or g1 ∼ g2 and ℎ1 = ℎ2.
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Below is the Cartesian product of the tree for 22
{1}
+ . (For those who

are already familiar with partisan games, the direction of the arrows does not
indicate that those moves are only available for either L or R.):

22 +

11 + 22 +

11 + 22

11

0

If G is an edge adjoining two vertices, what does the product G□G look
like? What about (G□G)□G? Can you generalize it to any number of copies
of G?

A:.G□Gisasquare,alsocalleda4-cycleanddenotedC4.(G□G)□G
isacube.Asweincreasethenumberoffactorsinourproductwein-
creasethedimensionsofourcube.

IfG1, G2 are games then the graph of the game sumG1+G2 is the Cartesianproduct of the game graphs of G1 and G2. You may want to verify this for
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yourself, but only with very small games.

Exercises for 0.4

⋆ 0) Use a (partial) game tree to find the outcome class of . (Answer
0.4.0 in Appendix)

1) Use a (partial) game tree to find the outcome class of .

2) Use a (partial) game tree to find the outcome class of .

⋆ 3) Find the outcome class of 33
{1,2}

+ . If possible, find and use the outcome
classes for the two components and use that to justify your answer. If that fails,
draw the game tree for the sum. (Answer 0.4.3 in Appendix)

4) Find the outcome class of 33
{1,2}

+ . If possible, find and use the
outcome classes for the two components and use that to justify your answer. If
that fails, draw the game tree for the sum.

⋆ 5) Find the outcome class of 33
{1,2,3}

+ . If possible, find and use the
outcome classes for the two components and use that to justify your answer. If
that fails, draw the game tree for the sum. (Answer 0.4.5 in Appendix)

6) Find the outcome class of 33
{1,2,3}

+ . If possible, find and use the outcome
classes for the two components and use that to justify your answer. If that fails,
draw the game tree for the sum.
7) Let A = {a, b, c} and B = {x, y, z}. How many elements are in A × B?
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8) Find P3□P3, where P3 is a path graph on three vertices.
9) Find P3□P3□P3, where P3 is a path graph on three vertices.

⋆ 10) Prove that if games G and H are both in  , then the game G +H is in  .
(Answer 0.4.10 in Appendix)
11) Prove that if the game G is in  and the game H is in  , then the game
G +H is in  .

0.5. Tweedledum and Tweedledee

“What’s good for you is good for me”
Says Tweedle-dee Dum to Tweedle-dee Dee

- Bob Dylan6, “Tweedle Dee & Tweedle Dum”’

Youmay have already noticed that positions like and
are in  without having to draw out the game tree. There is a common high-level
strategy for the previous player to win on any position that is a sum of two equal
impartial components called Tweedledum and Tweedledee7.
The strategy is simple to explain and does not require any of the theory we’ve

built up so far. Whatever the next player does to one side of the sum, the previous
player will do that to the other side. After bothmoves have beenmade, the current
position will either be terminal, or the game will still be the sum of two equal
positions. Thus, the previous player can continue this strategy until they reach
a terminal position. The next player can never be the one to reach the terminal
position because they can only make a move on one of the components.

In general, this means that for any impartial position G, G + G ∈  . We
don’t even need to determine the outcome class of G. As you can imagine, this
7This is a reference to the two characters in Lewis Carroll’s Through the Looking Glass
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simplifies evaluation of many positions. For example, it is very easy to see why
is an -position:



⋮⋮⋮⋮⋮TT

Some important notes for using this.
• First, the TT above means we know that this is a -position, because the

previous player can follow the Tweedledum-Tweedledee strategy (TT).8
• Second, in section 2.4, we will generalize this principle so we can use it in

more cases!
“Ditto,” said Tweedledum.

“Ditto, ditto!” cried Tweedledee.9

Exercises for 0.5

⋆ 0) Find and prove the outcome class of , a KAYLES
row of 11 pins. (Answer 0.5.0 in Appendix)

1) Find and prove the outcome class of .
8Beware: this is not standard notation outside of this text.
9From Through the Looking Glass by Lewis Carroll.
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⋆ 2) Find and prove the outcome class of . (Answer 0.5.2
in Appendix)

3) Find and prove the outcome class of .

⋆ 4) Find and prove the outcome class of + 33
{1,3}

. (Answer 0.5.4 in
Appendix)

5) Find and prove the outcome class of .

⋆ 6) Find and prove the outcome class of . (Answer 0.5.6 in
Appendix)
7) Use your answer to Exercise 0.5.6 to find and prove the outcome class of

.

0.6. Nimbers

But Zero doesn’t care what the stats add to
’Cause winning is all zero ever wanted to do

- Phonte, “Why not 0”’

Finding the outcome classes of two components can help determine the out-
come class of their sum, but only if at least one of them is  . If both are  ,
then we either need to trace out the whole game tree or find another solution.
Thankfully, we have that other solution: we can find the values of the individual
components and use those together to determine winnability!
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For impartial games, these values are called nimbers. Before we learn about
them specifically, let’s learn about the ruleset they’re named after, NIM.

NIM
NIM is an ancient game that has been played in different forms across dif-
ferent cultures. In 1901, Charles Bouton coined the name “Nim” and de-
scribed the complete theory[2].
The game play consists of removing objects (classically tokens, sticks, or
pebbles) from piles (“heaps” or “Nim heaps”). Each turn, a player removes
objects (at least one) from exactly one heap. The game ends when all heaps
are empty.

→ →

First move takes the entire last heap; the second takes one stick from the
second.

Each NIM heap is essentially a SUBTRACTION pile of the same size where
players can remove any number of tokens. That means that the first two levels of
the game tree always look the same.

0
In NIM, we can consider each pile to be its own position, with multiple piles

being a sum of positions. For example:
= +

or:
= + = + +
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We can find the outcome class of a game sum in the same way we found the
outcome class of a single position: By using a game tree! Each of the options
from the top includes just a move on one of the components.

00
What is the outcome class o( )?
We would really like to find values to which different sets of positions are

equivalent. By equivalent we mean that they always behave the same when we
add them to other games. Positions G and H are equivalent if we can add the
same game to both of them and both sums are always in the same outcome class.
To use our notation:

∀J ∶ if o(G+ J ) = o(H + J ), then we say that G is equivalent toH , or G = H

Math Diversion: Quantifiers
Mathematicians use symbols to abbreviate things that we tend to write of-
ten. Sometimes you’ll see what look like upside-down or backwards letters.
We’ve already seen the Greek letter ∈ used for set inclusion. We can also
use it backwards to show a set contains an element, like this:

S ∋ x

Another couple of examples occur when we use quantifiers to talk about
the existence of objects with particular properties. When we want to say
that all elements in a certain set have a particular property then we use the
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universal quantifier ∀. For example
∀x ∈ ℝ(x∕2 ∈ ℝ)

is read as “For any real number x, half of x is also a real number.” Similarly,
we use the existential quantifier ∃ to denote that an object with a particular
property exists:

∃n ∈ ℤ(n = n2)

says, “There exists an integer n that is equal to it own square.” Note that both
0 and 1 qualify but the statement is true because there is at least one such
integer.

We can combine quantifiers in long statements to make statements like
∀r ∈ ℚ∃n ∈ ℤ(rn ∈ ℤ)

What does this statement say, and is it true?

A:.Foranyrationalnumberthereisanintegersuchthattheirproduct
isaninteger.It’struebecausewecanmultiplybythedenominatorofr
andtheresultisthenumerator,whichisaninteger.

What about the following statement?
∃x ∈ ℝ∀y ∈ ℝ(x + y > x)

A:.“Thereisarealnumberxsuchthataddinganyotherrealnumber
resultsinagreaternumber.”Thisisfalse,sinceycanbenegative.For
example,nomatterwhatxis,ify=−1thenx+y<x.Sothestatement
isfalse.

For impartial games there is a neat trick to determine whether two games are
equal.

In this text, we include 0 as a Natural number. Thus, ℕ = ℕ∪{0} = ℤ≥0. Thisis a point of contention among mathematicians, so it’s customary to settle on a
convention and stick with it. As Combinatorial Game Theorists, 0 ∈ ℕ simplifies
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a lot of statements.
We can describe each impartial game as the set of its options. For impartial

games, we will say that a position is equal to the set of its options. For example,
a NIM position with three sticks, = {0, , }.

As mathematicians, we like to associate numbers to things whenever we can.
It would certainly make things like addition and equivalence easier to handle.
In [6] and [4], the authors realized that any two -Positions are equivalent, and
hence we sometimes refer to numbers associated with impartial combinatorial
games as Grundy numbers or Grundy values. Thus, whatever numbering system
we use for games should assign the same number to all  Positions. Let’s use 0.
From here, we should probably assign the same number to every game that has
precisely one move to a -position and no others. It makes sense to use 1 for
that.

We can define these numbers recursively. Every leaf node is a -Position so
assign it a 0. Any parents of only  -Positions are also -Positions, so they
get assigned 0, as well. Every parent of a 0 that has no other children gets a 1.
In general, let’s assign every node a number equal to the smallest non-negative
integer assigned to its children. This is called theminimum excludant, abbreviated
mex. So, for example, mex ({0, 1}) = 2 and mex ({1, 2}) = 0.

Unfortunately, by using positive integers, we run into conflict with values of
partisan games we’ll see in section 3.1. In order to differentiate, we will put a ∗
in front of the number. For example, ∗5 is the value of the impartial game with
options: ∗ 0, ∗ 1, ∗ 2, ∗ 3, and ∗ 4. This means that ∗ 0 is the same as 0, so we’ll
just call it that. Additionally, ∗ 1 is so common that we will usually just refer to
it as ∗.

Look back at the trees we built for NIM. If there are no remaining sticks then
we have a  Position and its Grundy number is 0. If there is a single stick then
its only option is 0. Since mex ({0}) = 1, a single stick has a Grundy number
of 1 and a value of ∗. What about a pile of ten sticks? It has options with any
number of sticks less than ten. Since mex ({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}) = 10, it
gets a Grundy number of ten (and a value of ∗ 10). In general, a pile of n-many
sticks has Grundy number n and value ∗n. That makes things easy!

Because NIM has such a nice, simple way to determine Grundy numbers, we
also call these nimbers. Every impartial game has a nimber and behaves effec-
tively the same as a NIM pile. Let’s formalize that to define equality for impartial
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games: we say that for two impartial games, G andH , G = H if and only if both
G andH have nimber k.10 Furthermore, in that case, we say G =∗ k = H .
Let’s use everything we learned to find the nimber value of .
First, we draw out the game tree:

0TT

0

00

(We’ve already labelled the value for the Tweedledum-Tweedledee situation
with .) Next, we work our way up from the bottom, using the mex-rule
to determine the nimbers.

10In Chapter 2, we’ll learn that this definition doesn’t work for partisan games. We’ll present a
more comprehensive on in Section 2.4.
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∗3

0TT
∗2

∗

0
0

∗

0

For impartial games we will use notation similar to sets but with an asterisk on
the left. That set will contain all the move options for that position. For example,
this means that the root of that previous tree is equal to ∗

{

∗, ∗2, 0
}, which is

equal to ∗3.
Computational Corner: Mex
Let’s consider writing a function to calculate the mex of a list of integers.a
We want it to act like this:
>>> mex([1, 3, 5])
0
>>> mex([1, 0, 2])
3

We can write this with a simple loop that checks each non-negative integer
in increasing order:
def mex(integers):

”’Returns the mex (minimum excluded value) of integers.”’
num = 0 # next number to find
while num in integers:

num += 1
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return num
This runs inO(n2) time in the worst case. In Exercise 0.6.54 , we challenge

you to write a mex function that runs in O(n log(n)) time.
aWe are using a list instead of a set as we expect more readers to be familiar with lists.

Consider two games,G1 = ∗
{

0, ∗, ∗2, ∗3
} andG2 = ∗

{

0, ∗, ∗2, ∗3, ∗5, ∗6, ∗7, ∗9
}.

Both of these have a nimber of ∗4, so, by our prior definition of equality (for im-
partial games), we say that both G1 =∗ 4 and G2 =∗ 4, (so G1 = G2.) What
happens if we add G1 and G2?Thankfully, G1 + G2 = 0. We can use a modified Tweedledum-Tweedledee
strategy to prove this. If the next player chooses one of the moves to a nimber of
∗ 3 or less, then the previous player can proceed as in Tweedledum-Tweedledee
by choosing the mirror move on the other component of the sum. On the other
hand, if the next player moves to one of the bigger-nimber positions (∗5, ∗6, ∗7,
or ∗9) then the previous player can choose to move from that position to ∗4, an
option they must all have. This same argument works for all nimbers, the proof
of which is Exercise 0.6.56.

We can use everything we’ve learned to quickly find the values for positions in
SUBTRACTION. For example, if we know we’re interested in finding the nimber
for 55

{1,2}
, we can start a table and add to it:

k 0 1 2 3 4 5
kk
{1,2}

We know that a pile of 0 has no moves, and a pile of 1 has only a move to 0,
so our first entries are:

k 0 1 2 3 4 5
kk
{1,2}

0 ∗

For the next values, since our subtraction set is {1, 2}, we can use the mex-rule
on the previous two elements to find that value. This means we can quickly write
in the next value as we go along. The next two values are:
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k 0 1 2 3 4 5
kk
{1,2}

0 ∗ ∗2 0 ∗ ∗2

What happens when we continue this table all the way up to 1010
{1,2}

? What pattern
emerges?

k 0 1 2 3 4 5 6 7 8 9 10
kk
{1,2}

0 ∗ ∗2 0 ∗ ∗2 0 ∗ ∗2 0 ∗

The pattern seems to be: kk
{1,2}

=

⎧

⎪

⎨

⎪

⎩

0, k ≡ 0 mod 3
∗, k ≡ 1 mod 3
∗2, k ≡ 2 mod 3

Let’s prove that this pattern continues for all pile sizes. Note that if we happen
to know the value for a pile of size n, then it’s easy to see what the value is for a
pile of size n + 1. When we want to prove something about progressively larger
sets, it’s often useful to employ mathematical induction.

Math Diversion: Proof by induction
Often we want to prove some property for all positive integers, e.g. that
3n > n2 or that∑n

k=1 k =
n(n+1)
2

. One way to do this is with a technique called
mathematical induction. We demonstrate that a very simple case of a claim
is true, and then show that whenever the claim is true for one integer, it is
also true for the next. It’s easiest to see this through an example.

Consider the claim that ∑n
k=1 k =

n(n+1)
2

. We want to show that this claim
is true for any positive integer n. We can plug in some values of n to check,
but since there are infinitely many possible values for n we can never check
them all. Instead, let’s rewrite this claim as a function of n:

P (n) ∶
n
∑

k=1
k =

n(n + 1)
2

In other words,
P (n) is the claim that∑n

k=1 k =
n(n+1)
2

,
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P (12) is the claim that∑12
k=1 k =

12(12+1)
2

, and
P (,) is the claim that∑,

k=1 k =
,(,+1)

2
.

We begin by demonstrating that a base case is true. This is the smallest
possible value for n, and is usually 0 or 1. The base case is often very easy
to prove.

Base Case: P (1). ∑1
k=1 k = 1, and 1(1+1)

2
= 1. So they are equal when

n = 1 and the base case is proven. ✓
Next, we assume that the claim is true for n and use that to show that it is

also true for n + 1.
Inductive Assumption: We assume P (n) is true and show that P (n + 1)

is true. If P (n) is true then ∑n
k=1 k =

n(n+1)
2

. Consider ∑n+1
k=1 k. This equals

∑n
k=1 k + (n + 1). By our inductive assumption, this equals n(n+1)

2
+ (n + 1)

which, when simplified, equals (n+1)(n+2)
2

. Therefore,∑n+1
k=1 k =

(n+1)(n+2)
2

and,
hence, P (n + 1) is true. ✓
Now, since we have shown both that P (1) is true and P (n) ⇒ P (n + 1),

we have proven the claim.
An inductive proof is like climbing a staircase. If I can prove to you that I

can get up the first step, and that I can get from any one step to the next one,
then I’ve shown that I can reach every step.

Try to use induction to prove the other claim above, that 3n > n2 for any
positive integer n.

A:.Weproceedbyinduction.LetP(n)bethestatement3n>n2.
BaseCase:P(1).31=3and12=1,sothebasecaseistrue.✓
InductiveAssumption:AssumeP(n)istrue.Consider3n+1.Since
3n+1=3⋅3n,andbyinductiveassumption3n>n2,weknowthat
3n+1>3⋅n2.Also,whenn>1,2n2>2n+1,andhence3⋅n2=
n2+2n2>n2+2n+1.Therightsidesimplifiesto(n+1)2,andtherefore
3n+1>(n+1)2,andP(n+1)isproven.✓
Thereforetheclaimistrue.

Now we are ready to proceed with our proof.
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Claim 0.6.1. The game values for kk
{1,2}

are determined by kk
{1,2}

=

⎧

⎪

⎨

⎪

⎩

0, k ≡ 0 mod 3
∗, k ≡ 1 mod 3
∗2, k ≡ 2 mod 3

for all k ∈ ℕ.

Proof. We proceed by induction on k. Let P (k) be the statement in the claim.
Base Case: The game 00

{1,2}
has value 0, so the base case is true. ✓

Inductive Assumption: Assume that P (k) is true, and consider a pile of size
k + 1. The only options are to the games kk

{1,2}
and k − 1k − 1

{1,2}
. Thus, k + 1k + 1

{1,2}
has

the Grundy value associated with the mex of these two options. By our inductive
assumption, these values depend on the value of (k + 1) mod 3.
If (k + 1) mod 3 = 0 then k mod 3 = 2 and (k − 1) mod 3 = 1, so the options

have the values ∗2 and ∗. Since mex ({1, 2}) = 0, k + 1k + 1
{1,2}

= 0.
Similarly, if (k + 1) mod 3 = 1 or 2, then k + 1k + 1

{1,2}
=∗ or ∗ 2, respectively.

Therefore, P (k + 1) is true, and the claim is proven.

Computational Corner: Recursion with Subtraction
Wemaywant to have some code to calculate these nimbers for SUBTRACTION-
{ }like this:
>>> n = get_subtraction_nimber(0, [1,2])
>>> print(n)
0
>>> get_subtraction_nimber(1, [1,2])
1

The get_subtraction_nimber functionwill certainly be recursive. Let’s
give it a shot:
def get_subtraction_nimber(tokens, subtraction_list):

”’Returns the nimber of a Subtraction position.”’
option_nimbers = []
for subtraction in subtraction_list:
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option_tokens = tokens - subtraction
if option_tokens >= 0:

option_nimber = get_subtraction_nimber(
option_tokens, subtraction_list)

option_nimbers.append(option_nimber)
return mex(option_nimbers)

Computational Corner: Dynamic Programming
Our previous version of get_subtraction_nimber is pretty slow. The
main reason for this is that we are recalculating values we’ve already com-
puted. To speed things up to do the calculations by hand, we used a table to
keep track of those values. Let’s do the same to our function.

We will generalize it by adding another parameter: a dictionarya of values
we’ve already calculated:
def get_subtraction_nimber(tokens, subtraction_list, lookup={}):

”’Returns the nimber of a position in a game of Subtraction.”’
if tokens in lookup:

# we already calculated this value
return lookup[tokens]

option_nimbers = []
for subtraction in subtraction_list:

option_tokens = tokens - subtraction
if option_tokens >= 0:

option_nimber = get_subtraction_nimber(option_tokens,
subtraction_list, lookup)

option_nimbers.append(option_nimber)
nimber = mex(option_nimbers)
lookup[tokens] = nimber # update the table
return nimber

Note: We are including a default parameter for the lookup parameter in
case we have old code that still calls the function with only two parameters.

Including a table as a shortcut like this is known as dynamic programming.
Implementing it in a recursive function can dramatically speed up code, most
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notably when you are making multiple recursive calls. To modify a recursive
function to employ dynamic programming usually requires four changes:

• Modify the parameter list to include the table.
• Check whether you already have the result for the current value in the

table so you can make the shortcut.
• Include the table as an argument when making recursive calls.
• Add the new value to the table before you return it.

If you forget any one of these, you will miss out on the improvement!
aMore about Python dictionaries in Python 3 here: https://docs.python.org/
3/tutorial/datastructures.html#dictionaries. This is Python’s version of
a Hash Map or Hash Table, where looking up a value theoretically takes con-
stant (O(1)) time. There is an excellent discussion of Python’s implementation in
this Stack Overlow Q& A: https://stackoverflow.com/questions/114830/
is-a-python-dictionary-an-example-of-a-hash-table.

Exercises for 0.6
0) Write the following sentence using mathematical quantifiers: “If there is a
natural number between 3 and 4, then it is equal to its own inverse.”
1) Write the following sentence using mathematical quantifiers: “Every natural
number has a real square root.”
2) Write the following sentence using mathematical quantifiers: “If twice an
integer is greater than its square root, then that integer is smaller than 2.”
3) Write the following sentence using mathematical quantifiers: “Every even
number has an even cube.”
4) Write the following sentence using mathematical quantifiers: “There is a ra-
tional number in lowest terms for which the numerator is less than a third as big
as its denominator.”
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5)Write the following sentence using mathematical quantifiers: “For any pair of
numbers, if their difference is greater than 1, then their sum is less than twice the
larger of the two.”
6) Show using induction that for all n ∈ ℤ+,

∑n
i=1 i

2 = n(n+1)(2n+1)
6

.
7) Show that there is no greatest prime number. (Hint: Show there are greater
than n-many primes for all n.)

⋆ 8) Conjecture a formula for∑n
j=1 2

j and prove your claim using induction. (An-
swer 0.6.8 in Appendix)
9) Conjecture a formula for∑n

j=1
1

j(j+1)
and prove your claim using induction.

⋆ 10) Draw the full game tree for . (Answer 0.6.10 in Appendix)

11) Draw the full game tree for .
⋆ 12)What is mex ({0, 1, 2, 3, 4})? (Answer 0.6.12 in Appendix)

13)What is mex ({1, 2, 3, 4})?
⋆ 14)What is mex ({0, 1, 2, 4})? (Answer 0.6.14 in Appendix)

15) If S = {0, 2, 4}, what is mex (S)?
16) If S = ∅, what is mex (S)?
17) If S = {10, 11, 12, 13, 14, 15}, what is mex (S)?

⋆ 18) If S = {0, 1, 2, 3, 4}, and T = {5, 6, 7, 8, 9} what is mex (S ∪ T )? (Answer
0.6.18 in Appendix)
19) If S = {0, 1, 2, 3}, and T = {2, 3, 4, 5} what is mex (S ∪ T )?
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20) If S = {0, 1, 2, 5, 6, 7}, and T = {0, 1, 4, 5, 8, 9} what is mex (S ∪ T )?
⋆ 21) If S = {0, 1, 2, 5, 6, 7}, and T = {0, 1, 4, 5, 8, 9} what is mex (S ∩ T )?
(Answer 0.6.21 in Appendix)
22) If S = {0, 2, 4, 6, 8}, and T = {1, 3, 5, 7, 9} what is mex (S ∩ T )?
23) If S = {0, 2, 3, 4, 5}, and T = {0, 1, 3, 4, 5} what is mex (S ∩ T )?

⋆ 24) If S = {0, 2, 4, 6, 8}, what is mex (SC
)? (Answer 0.6.24 in Appendix)

25) If S = {5, 6, 7, 8, 9}, what is mex (SC
)?

26) If S = {4, 5, 6, 7}, what is mex (SC
)?

27) If S ⊆ ℕ, what is mex (SC
)? Prove your answer. Hint: consider s to be the

smallest element of S.
⋆ 28) If S = {2k | k ∈ ℕ}, what is mex (S)? (Answer 0.6.28 in Appendix)

29) If S = {2k | k ∈ ℕ}, and T = {3k | k ∈ ℕ} what is mex (S ∪ T )?
30) If S = {2k | k ∈ ℕ}, and T = {3k + 1 | k ∈ ℕ} what is mex (S ∪ T )?

⋆ 31)What is mex (ℕ ⧵ {56}
)? (Answer 0.6.31 in Appendix)

32) Let S = {5k | k ∈ ℕ}. What is mex (ℕ ⧵ S
)?

⋆ 33) Let S = {5k − 1 | k ∈ ℕ}. What is mex (ℕ ⧵ S
)? (Answer 0.6.33 in

Appendix)
34) Let S = {2k | k ∈ ℕ} and T = {5k | k ∈ ℕ}. What is mex (S ⧵ T

)?
⋆ 35) Let S = {2k | k ∈ ℕ} and T = {5k | k ∈ ℕ}. What is mex ((S ⧵ T )C

)?
(Answer 0.6.35 in Appendix)
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36) Let S = {2k | k ∈ ℕ}, T = {3k | k ∈ ℕ}, and R = {5k | k ∈ ℕ}. What is
mex

(

S ∪ (T ⧵ R)C
)?

⋆ 37) Simplify ∗
{

∗, ∗3, ∗5, ∗7, ∗9
} to a single nimber value. (Answer 0.6.37 in

Appendix)
38) Simplify ∗

{

0, ∗, ∗2, ∗3, ∗5, ∗6, ∗8, ∗9
} to a single nimber value.

⋆ 39) Simplify ∗
{

0, ∗, 0, 0, ∗
} to a single nimber value. (Answer 0.6.39 in Ap-

pendix)
40) Simplify ∗

{

∗, 0, ∗9, ∗8, ∗3, ∗8, ∗4
} to a single nimber value.

⋆ 41) G = ∗
{

0, ∗2, ∗4, ∗
{

0, ∗2, ∗4
}

}

includes another impartial game’s op-
tions written out. Simplify this to a single nimber value. (Answer 0.6.41 in
Appendix)

42) G = ∗
{

∗
{

0
}

, ∗{ ∗ } , ∗4, ∗
{

0, ∗2, ∗4
}

}

. Find the nimber value of G.

43)G = ∗
{

∗
{

0, ∗, ∗2, ∗3, ∗4
}

, ∗
{

∗, ∗2, ∗3, ∗
{

∗, ∗6
}

}

, ∗4, ∗
{

0, ∗2, ∗4
}

}

.
Find the nimber value of G.

⋆ 44)What is the value at the root of this impartial game tree?

Justify your answer by labeling each node of the tree with its value. (This is a
follow-up to exercise 0.2.0.) (Answer 0.6.44 in Appendix)
45)
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Justify your answer by labeling each node of the tree with its value. (This is a
follow-up to exercise 0.2.1.)
46)What is the value at the root of this impartial game tree? Justify your answer
by labeling the nodes in the tree with the nimbers.

⋆ 47) Let G be the position in SUBTRACTION-{1, 2, 3} with a pile of 3. What is
the nimber ofG? Justify your answer by drawing the game tree and labeling each
node with its nimber. (This is a continuation of exercise 0.2.5.) (Answer 0.6.47
in Appendix)
48) Let G be the position in SUBTRACTION-{1, 2, 3} with a pile of 4. What is
the nimber ofG? Justify your answer by drawing the game tree and labeling each
node with its nimber value. (This is a continuation of exercise 0.2.6.)

⋆ 49) Using the table for kk
{1,2}

as a model, create a similar table to find the nimber
of 55

{1,2,3}
. (Answer 0.6.49 in Appendix)

50) Continue the table in exercise 0.6.49 to go all the way up to 1010
{1,2,3}

. What
pattern do you see? When does each nimber seem to occur?
51) Prove, by strong induction, that the pattern you found in exercise 0.6.50
continues for all pile sizes.
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⋆ 52) Do the same as exercises 0.6.50 and 0.6.51 , except with the subtraction set
{1, 3} instead. (Answer 0.6.52 in Appendix)
53) Do the same as exercises 0.6.50 and 0.6.51 , except with the subtraction
set {1, 4} instead.

⋆ 54) The version of the mex function given in the chapter is elegant partly be-
cause it is so short. Unfortunately, O(n2) is pretty inefficient. We can drastically
speed it up to O(n log(n)) by writing a bit more code. Rewrite mex to run in
O(n log(n)) time. (Hint: Python’s built-in sortmethod for lists takesO(n log(n))
time.) (Answer 0.6.54 in Appendix)
55) In theDynamic ProgrammingComputational Corner, we included four changes
that have to be made to implement dynamic programming in a recursive function.
For each of those changes, explain what will happen if a programmer forgets to
implement just that part but does all the others.

⋆ 56) In the text, we showed two different games,G1 andG2 that were both equal to
∗ 4. We showed that G1 +G2 ∈  , even though they weren’t identical positions.
Show that this works for any two equal (but not necessarily identical) positions.
Prove that if G = H , then G +H ∈  . (Answer 0.6.56 in Appendix)
57) Prove the inverse of Exercise 0.6.56: for two impartial games G and H , if
G +H ∈  then G = H .

0.7. Nim Sums

One for you and one for me
But one and one and one hardly three

- Nancy Sinatra11, “Sugar Me”

Nimbers are for more than just determining whether two impartial positions
sum to zero. Consider the following NIM position:
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You can use the tactics we’ve learned so far to analyze the game tree and see
that this is a -position. Alternatively, as we will learn next, we can simply use
the three nimbers and see that ∗ 1+ ∗2+ ∗3 = 0.

Before we get too excited, let’s notice that this math doesn’t exactly work as
we might want. Indeed, ∗ 1+ ∗3+ ∗4 ≠ 0, because it has a zero option.





Since it’s in , it must have a non-zero nimber value. Somewhat unexpectedly,
∗ + ∗ 3+ ∗ 4 =∗ 6. As we know, adding any two games with the same nimber
value results in 0, meaning that ∈  .

Thankfully, there is a trick to determine sums of nimbers (“nim sums”) without
trying out a bunch of game trees. Interestingly, this process uses binary repre-
sentations and the logical XOR operator. We explain how to perform each part
of this calculation.

In order to find the sum of two nimbers, we first have to represent the nimbers
in binary: strings of only 1s and 0s. For any natural number, x, we can represent
x as a sum of powers of two where we include each power either once or not at
all.

Before we see an example, note that you’re used to doing the same thing with
powers of ten. The number 3, 279 is 3 ⋅ 103 + 2 ⋅ 102 + 7 ⋅ 101 + 9 ⋅ 100. We are
just so used to writing numbers in base ten that we do it without thinking about
it. Binary, or base two, is the same but with powers of two.

As examples,
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5 = 4 + 1
= 22 + 20

= 1 ⋅ 22 + 0 ⋅ 21 + 1 ⋅ 20

100 = 64 + 32 + 4
= 26 + 25 + 22

= 1 ⋅ 26 + 1 ⋅ 25 + 0 ⋅ 24 + 0 ⋅ 23 + 1 ⋅ 22 + 0 ⋅ 21 + 0 ⋅ 20

91 = 64 + 16 + 8 + 2 + 1
= 26 + 24 + 23 + 21 + 20

= 1 ⋅ 26 + 0 ⋅ 25 + 1 ⋅ 24 + 1 ⋅ 23 + 0 ⋅ 22 + 1 ⋅ 21 + 1 ⋅ 20

It may be helpful to commit some powers of 2 to memory12:
20 21 22 23 24 25 26 27 28 29 210
1 2 4 8 16 32 64 128 256 512 1, 024

After generating these sums of powers of two, the important part is to know
where the 1s and 0s are. Then we can write these out in binary, including a
subscript of 2 to indicate that the number should be considered a binary number.

Back to our three examples:
• 5 = 1 ⋅ 22 + 0 ⋅ 21 + 1 ⋅ 20, so 1012 = 5.
• 100 = 1 ⋅26+1 ⋅25+0 ⋅24+0 ⋅23+1 ⋅22+0 ⋅21+0 ⋅20, so 11001002 = 100.
• 91 = 1 ⋅26+0 ⋅25+1 ⋅24+1 ⋅23+0 ⋅22+1 ⋅21+1 ⋅20, so 10110112 = 91.

12Computer science students should memorize their powers of 2 up through 216.
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Similar to how we normally refer to each place value as the “ones”, “tens”,
“hundreds” (going from right-to-left), we refer to the different binary places as
“ones”, “twos”, “fours”, “eights”, etc. As you might expect, each natural number
can be written in binary in exactly one way.

Once we have the binary representations of the two nimbers, we can use a bit-
wise XOR (⊕) to add them together. “Bit-wise” means we will calculate the sum
digit-by-digit. To perform the XOR, we can use this table:

x 0 0 1 1
y 0 1 0 1

x ⊕ y 0 1 1 0
There are alternative ways to think of this, which even work for adding more

than two bits:
• The resulting bit is a 1 if and only if there are an odd number of 1s being

added.
• XOR is just addition without carrying.
Use whichever works best for you.
As an example, let’s add ∗ 6 and ∗ 5. First, we convert 6 and 5 to binary.

6 = 1102 and 5 = 1012. Then we perform the XOR:
110

⊕ 101
011

The final step is to convert the 0112 back to decimal. As before, each digit
corresponds with a power of 2, so we just add those together.

0112 = 0 ⋅ 22 + 1 ⋅ 21 + 1 ⋅ 20

= 21 + 20

= 2 + 1
= 3
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Thus, ∗6+ ∗5 =∗3.
We can use this to quickly find the nimber of any NIM game. For example to

find the value of, :
∗1 ⟶ 0012
∗2 ⟶ 0102
∗3 ⟶ 0112
∗4 ⟶ 1002

+ ∗5 ⟶ ⊕ 1012
∗1 ⟵ 0012

With this shortcut, when evaluating the sum of multiple impartial game posi-
tions, it is often more difficult to determine the individual nimbers than it is to
add those nimbers together.

This brings us to what might seem like an obvious result but is still worth
proving rigorously here.
Claim 0.7.1. ∗ k =∗ l ⇔ k = l

Proof. Firstly, it is clear that if k = l then ∗ k =∗ l. Now, assume that ∗ k =∗ l.
Adding ∗ k to both sides yields ∗ k+ ∗ k =∗ k+ ∗ l. Since the left side is 0, this
means that the right side, ∗ k+ ∗ l, must also be 0. By the definition of the nim
sum, this is equal to 0 if and only if the binary expansions of k and l are identical,
which is only true when k = l.

Computational Corner: Adding Nimbers
How long does it take to add two nimbers? To perform the calculation
by hand, we have to convert the number to binary, XOR each digit, then
convert it back to decimal. Computers already keep numbers stored in bi-
nary, so they get to skip that step. The XOR process, then, is constant for
each digit, so we only need to know how many digits are in the number.
This is exactly ⌈

log2(x)
⌉. Thus, summing two numbers, x1 and x2, takes

O(log(x1) + log(x2)) time.
Don’t go writing your own function, however! Most programming lan-

guages have a built-in bitwise-XOR operator. In Python, ^ will do the trick:
>>> 3 ^ 6
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5

Exercises for 0.7
⋆ 0)What is the nimber value ∗3+ ∗2? (Answer 0.7.0 in Appendix)

1)What is the nimber value ∗5+ ∗3?
⋆ 2)What is the nimber value ∗4+ ∗2? (Answer 0.7.2 in Appendix)

3)What is the nimber value ∗6+ ∗11?
⋆ 4)What is the nimber value ∗5+ ∗11? (Answer 0.7.4 in Appendix)

5)What is the nimber value ∗20+ ∗21?
⋆ 6)What is the nimber value ∗20+ ∗31? (Answer 0.7.6 in Appendix)

7)What is the nimber value ∗20+ ∗41?
8)What is the nimber value ∗20+ ∗37?

⋆ 9)What is the value of ∗ + ∗5+ ∗6? (Answer 0.7.9 in Appendix)
10)What is the value of ∗3+ ∗4+ ∗5?

⋆ 11)What is the value of ∗10+ ∗20+ ∗25? (Answer 0.7.11 in Appendix)
12)What is the value of ∗10+ ∗20+ ∗30+ ∗40?

⋆ 13) What is the value of
7
∑

i=1
∗ i =∗ + ∗2+ ∗3+ ∗4+ ∗5+ ∗6+ ∗7? (Answer

0.7.13 in Appendix)

14)What is the value of
9
∑

i=1
∗ i =∗ + ∗2+ ∗3+ ∗4+ ∗5+ ∗6+ ∗7+ ∗8+ ∗9?
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⋆ 15) Using what you learned in exercises 0.7.13 and 0.7.14 , what is the value
of

4k+1
∑

i=1
∗ i =∗ + ∗ 2+ ∗ 3 +⋯+ ∗ (4k)+ ∗ (4k + 1)? (Answer 0.7.15 in

Appendix)
16) Using what you learned in exercises 0.7.13 , 0.7.14 , and 0.7.15 , what is
the value of

4k+3
∑

i=1
∗ i =∗ + ∗2+ ∗3 +⋯+ ∗(4k + 2)+ ∗(4k + 3)?

17) Find the (nimber) value of the game that’s the sum of these two trees.

⋆ 18) Find an option of the game

i.e. (3, 7, 9), that is in  . (Answer 0.7.18 in Appendix)
19) Find an option of the game

i.e. (4, 9, 12), that is in  .
⋆ 20) Find an option of the game

i.e. (6, 2, 5), that is in  . (Answer 0.7.20 in Appendix)
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21) Find an option of the game

i.e. (13, 7, 9), that is in  .
22) Explain how to always find an option of any NIM position in that is in  .

⋆ 23) Find the nimber values of , , and . (Answer 0.7.23 in Appendix)

⋆ 24) Find the nimber value of . You will likely need to use your answer
to exercise 0.7.23 . (Answer 0.7.24 in Appendix)

25) Find the nimber value of . You will likely need to use your answer
to exercises 0.7.23 and 0.7.24 .
26)Use your answers to exercises 0.7.23 through 0.7.25 and findmore KAYLES
nimber values to fill in this table of KAYLES nimbers:

# pins 0 1 2 3 4 5 6 7 8 9 10
value

27)Using the mex functionwe’ve previouslywritten, write a function print_kayles_nimbers
that takes a single non-negative integer, n, and prints the nimber values of unbro-
ken rows of KAYLES pins from zero to n. E.g., print_kayles_nimbers(3)
should print:
Kayles with 0 pins equals *0
Kayles with 1 pins equals *1
Kayles with 2 pins equals *2
Kayles with 3 pins equals *3

(Hint: ˆ is the built-in operator for bitwise xor. Double hint: Our solution uses
dynamic programming and a separate function get_kayles_nimber.)
28) Prove that for any KAYLES position, G, with n unbroken pins: n = 0⇔ G =
0.
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0.8. Other Impartial Games

In order to play this next game, we will need to know some things about booleans
and boolean arithmetic.

Unlike normal arithmetic with numbers, booleans only include two values:
true and false, which we will denote as T and F, respectively. Just as with num-
bers, these two values have real-world meaning which we expect you are familiar
with.

We can have boolean variables, just as we have numeric variables, e.g. x1 and
x2 may be variables that could each be either T or F. Then, instead of addition
and multiplication, two of our main operators are: or (∨) and and (∧). Thus the
expression: x1 ∨ x2 means “x1 or x2”, and we can determine the truth value of
that expression based on the possible cases of the two values. This is described
in something called a truth table:

x1 x2 x1 ∨ x2
F F F
F T T
T F T
T T T

The left columns are arranged to provide for every possible combination of T
and F values of the variables. Then the column on the right provides the value of
the expression above for those values. For example, the third row says that when
x1 is T and x2 is F, the value of x1 ∨ x2 is T.Similarly, here is the truth table for And:

x1 x2 x1 ∧ x2
F F F
F T F
T F F
T T T

If we have a more-complicated formula, it is common to use extra columns
to compute the partial result before the whole thing. For example, to calculate
(x1 ∨ x2) ∨ (x1 ∧ x2), we might use:
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x1 x2 x1 ∨ x2 x1 ∧ x2 (x1 ∨ x2) ∨ (x1 ∧ x2)
F F F F F
F T T F T
T F T F T
T T T T T

There is also the negation operator, which is used to flip from true-to-false
and vice-versa. In this book, we use a line over the variable or expression being
negated, e.g. x1 ∨ x2. In other places, you may see it written with a ∼ or ¬ before
an expression, e.g. ∼ (x1 ∨ x2) or ¬(x1 ∨ x2). The negation operator gives us
(nearly) the most simple truth table:

x1 x1
F T
T F

Then, for example, we could create the truth table for x1 ∨ x2:

x1 x2 x1 ∨ x2 x1 ∨ x2
F F F T
F T T F
T F T F
T T T F

There are a variety of combinatorial game rulesets that use boolean formulas.
In these games, players are usually changing or setting boolean variables on each
of their turns. It is also common for these games to be in Conjunctive Normal
Form (CNF) meaning:

• Only literals (instances of variables) may be negated, not larger expres-
sions.

• The entire formula consists of a bunch of clauses with the and-operator
between them. Each clause is in parentheses, so the whole formula has a
structure like: (⋯) ∧ (⋯) ∧⋯ ∧ (⋯)
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• Each clause consists of literals or negated literals with the or-operator be-
tween them, e.g. (x1 ∨ x2 ∨ x3)

Here is an example of a boolean CNF-formula with three clauses and four
variables:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

AVOID TRUE
AVOID TRUE is a game played with a list of boolean variables
(x1, x2,… , xn) and a CNF, f , using those variables that has no negations.
All variables begin the game set to False. A turn consists of picking one
variable that is still False and flipping it to True, such that the whole for-
mula still evaluates to False. (A variable cannot be chosen if flipping that
would cause the formula to become True.)
To simplify positions, we will remove clauses that are already satisfied and
list extra variables afterwards.

(x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4) = F
(x1 ∨ x2) ∧ (x2 ∨ T ∨ x4) = F
(x1 ∨ x2) ∧ (x2 ∨ T ∨ T ) = F

The first move is to flip x3, making the whole second clause true. The
second flips x4, which leaves no further moves.
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NODE KAYLES
NODE KAYLES is a game played on an undirected graph. On the current
player’s turn, they choose a vertex. Then, the graph is altered by removing
that vertex and all adjacent vertices. When there are no more vertices, then
there are no more moves.

c

ba
d

e f
→

c

d
e f

→
d f

The first move chooses a, the second chooses c.

CHOMP!
CHOMP (sometimes stylized Chomp!) is an impartial game played on a
grid with squares labeled with integer coordinates from [1, n] × [1, m]. On
their turn a player chooses a remaining square with label (x, y) and removes
it along with all remaining squares of the form (x1, y1) such that x1 ≥ x
and y1 ≥ y. The player who removes square (1, 1) loses.

→ →

The first play is at (4, 2), removing (4, 2), (4, 3), and (4, 4). The next play
is at (2, 3), removing that position along with all pieces above and to the

right of this piece.

CHOMP is a simple game to play but difficult to strategize for as the board size
increases. In fact, no strategy is known for CHOMP in general. However, we do
know who can always win on a rectangular board!
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Claim 0.8.1. Any rectangular board [1, n] × [1, m] in CHOMP with more than a
single square is in .

Proof. We proceed by contradiction. Assume that the claim is false, and that
there is a strategy S whereby the second player can win the game. So, by as-
sumption, for any move (x, y) by the first player there is a strategic response (r, s)
that the second player can make on their way to win the game. In particular,
if the first player plays on square (m, n), removing only that square and nothing
else, then the second player’s response of square (r1, s1) will lead to a win for
them following S. However, since r1 ≤ n, s1 ≤ m, there is nothing preventing
the first player from making this their first move instead, and then following the
same strategy S that the second player had planned. Note that the result of re-
moving (r1, s1) on the first move is identical to the result of removing first (m, n)
and then (r1, s1). Thus, if S is a strategy for the second player to win, then it is
also a strategy for the first player to win. Hence there is no such strategy, and the
game must be in  .

You may be thinking to yourself that this method is strange, and it is! We have
proved that the game is in  using a strategy stealing argument. What’s more,
we have used a non-constructive proof.

Math Diversion: Constructive and non-constructive proof
We often prove the existence of something by finding it and presenting it
to our audience. For example, we can prove that there is a multiplicative
inverse for every x ∈ ℝ≠0 by simply pointing out that 1∕x ∈ ℝ≠0 and noting
that x ⋅ 1∕x = 1. Or, as above, we explain that every positive integer has a
Zeckendorf representation by demonstrating how to find it. This is called a
constructive proof because we have demonstrated that something exists by
finding it.

But we can also prove claims using non-constructive methods. For exam-
ple, consider the following claim about prime numbers.
Claim 0.8.2. There are infinitely many prime numbers.

Proof. We proceed by contradiction. Assume that there are only finitely
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many prime numbers, and let p be the largest. Let
n = p! = p(p − 1)(p − 2)⋯ 1 + 1.

Note that no integer m greater than 1 and less than or equal to p divides n
without remainder, (which we write as m|n). But by the Fundamental Theo-
rem of Arithmetic, every positive integer has a prime factorization. So there
much be some prime number q such that q|n, even if n = q is itself prime. But
we’ve seen that q ∉ [2, p], and so q > p. Thus, we have discovered the exis-
tence of a prime number greater than p, which we took as the largest prime.
Therefore, our assumption is false, and there are infinitely many primes
Notice that in our proof we did not actually list infinitely many primes.

Nor did we even find a prime larger than p. We simply demonstrated that
such a prime exists. This is a non-constructive proof that there are infinitely
many primes.

DOMINIM
DOMINIM is a NIM variant in which players are presented with a collec-
tion of dominoes. Each domino has a number of pips on top and a possi-
bly different number on the bottom. Players make NIM moves on the set
of domino tops, and once a domino is played it is flipped, so the bottom
becomes the new top. The game ends when all tops contain zero pips.

→ → →

The first player removes both pips from the lefthand domino then flips it.
The second player responds by removing one from the same domino and
flips it again, making in unplayable. The next player is forced to remove
the only pip in the righthand domino, leaving the following player a

single heap of four to remove and win.
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Exercises for 0.8
⋆ 0) Complete the following truth table for x1 ∧ (x2 ∨ x3).

x1 x2 x3 x2 ∨ x3 x1 ∧ (x2 ∨ x3)
F F F F F
F F T
F T F
F T T
T F F
T F T
T T F
T T T

(Answer 0.8.0 in Appendix)
1) Following the pattern of rows for exercise 0.8.0 , create a truth table for
(x1 ∧ x2) ∨ (x2 ∧ x3). You may use as many intermediate columns as you like.

⋆ 2)Howmany rows would we need in a truth table for a formula with four boolean
variables? (Answer 0.8.2 in Appendix)
3) How many rows do we need in a truth table for a formula with n boolean
variables?

⋆ 4) Consider AVOID TRUE played on the formula (x1 ∨ x2) ∧ x3. Assume the
players are planning to play on variables in this order: x1, x2, then x3. Evaluatethe formula after each (attempted) move (and show your work). What is the first
of these moves that can’t be made because it will be illegal? (Answer 0.8.4 in
Appendix)
5) Consider AVOID TRUE played on the formula (x1 ∨ x2) ∧ x3. Assume the
players are planning to play on variables in this order: x3, x1, then x2. Evaluatethe formula after each (attempted) move (and show your work). What is the first
of these moves that can’t be made because it will be illegal? (This is just like
exercise 0.8.4, but with the moves done in a different order.)
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6) Consider AVOID TRUE played on the formula (x1 ∨ x2) ∧ x3. Is the game in
 ? If so, what is the winning move? (Recommended: complete exercises 0.8.4
and 0.8.5 first.)

⋆ 7) Consider AVOID TRUE played on the formula (x1∨x2)∧ (x2∨x3∨x4). Which
variables can the first player not choose? (Answer 0.8.7 in Appendix)

⋆ 8) Consider AVOID TRUE played on the formula (x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4). What
is the outcome class of this position? (This is a continuation of exercise 0.8.7 .)
(Answer 0.8.8 in Appendix)
9) Consider AVOID TRUE played on the formula (x1 ∨x2) ∧ (x2 ∨x3 ∨x4). What
is the nimber value of this position? (This is a continuation of exercise 0.8.8 .)

⋆ 10) Use a game tree to determine the outcome class of NODE KAYLES on a path
with four vertices.

a b c d

Hint: combine moves that result in equivalent graphs into one option instead of
separate. (Answer 0.8.10 in Appendix)
11) In many positions, a player can find a winning move without analyzing the
whole game tree. Recalling the Tweedledee-Tweedledum strategy, what is the
winning move for the first player on a NODE KAYLES path with seven vertices?

a b c d e f g

Justify your answer.
⋆ 12) Find the outcome class and winning strategy for CHOMP on any rectangular
board of size 2 × n, n ≥ 2. (Answer 0.8.12 in Appendix)
13) Determine the game value of a single row CHOMP position of length n.

⋆ 14) Determine the game value of the CHOMP positions 2 × 2, 2 × 3, and 2 × 4.
(Answer 0.8.14 in Appendix)
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⋆ 15) Play 2 × n CHOMP with someone else for a few different values of n and win
every time. (Answer 0.8.15 in Appendix)

⋆ 16) Find all single-domino DOMINIM positions in  . (Answer 0.8.16 in Ap-
pendix)
17) Prove that the Grundy value of a DOMINIM position with t on top and b on
the bottom is equal to b + 1

0.9. Sequences of impartial game values

Patterns show up all over Discrete Mathematics. We’ve seen then in -positions
of SUBTRACTION and in the game values of other impartial games. In this chapter
we will look at just a few ways of identifying and characterizing sequences.

FIBONACCI NIM
FIBONACCI NIM is played identically to NIM with two additional restric-
tions: The first player may not remove all the sticks, and no player may
remove more than twice the number of sticks removed on the previous
turn.

→ → → 0

The first player removes 2 sticks. Since the second player can remove at
most 2 ⋅ 2 = 4, they do so. The first player can remove the remaining

3 < 2 ⋅ 4.
There are myriad modified versions of NIM. Why is FIBONACCI NIM so in-

teresting, and where does it get its name? First we need a short mathematical
diversion.

Math Diversion: Zeckendorf representations
Recall that the Fibonacci Numbers are the values in the sequence recursively
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defined by
F (n) =

{

1 n = 0 or 1
F (n − 1) + F (n − 2) otherwise

The first few are 1, 1, 2, 3, 5, 8, 13, 21, 34…. Just as every natural number
can be written as a unique sum of distinct powers of two (its binary represen-
tation), and, as long as it’s greater than one, as a unique product of primes
(its prime decomposition), it can also be written as a unique sum of non-
consecutive Fibonacci numbers. For example, 20 = 13 + 5 + 2. This is
known as a number’s Zeckendorf representation, after Édouard Zeckendorf
[?]. What are the Zeckendorf representations for 30, 40, and 50?

A:.30=21+8+1,40=34+5+1,and50=34+13+3

Imagine that you have written a number n as the sum of Fibonacci num-
bers, but some are consecutive. Think a bit on your own about how you could
turn your sum into a Zeckendorf representation for n.

A:.NotethatifyoursumcontainsbothF(k)andF(k+1)thenyoucan
replacethepairofthemwithF(k+2).Thisprocesscanberepeated
untilnoconsecutiveFibonaccinumbersremain.

Now let’s return to FIBONACCI NIM. Before determining all of the -positions
let’s find a winning strategy directly. Say that you have a heap of n sticks. If
this game is in  then there is a move that will take it to  . If n = F (i1) +
F (i2) + ⋯ + F (ik) is the Zeckendorf representation for n, then remove F (i1)sticks from the heap if possible. What remains is n − F (i1) sticks, which has
its own Zeckendorf representation of F (i2) +⋯ + F (ik). Note that since i1 and
i2 are not consecutive integers, and F (i1), F (i2) are not consecutive Fibonacci
numbers, the value of F (i2) is more than twice as large as F (i1), (remember that
F (k) + F (k + 1) = F (k + 2), and F (k + 1) > F (k), so F (k + 2) > 2 ⋅ F (k)).
This means that if you are able to remove F (i1) sticks then your opponent cannotlegally remove F (i2) sticks. It is possible to show that no matter what move your
opponent makes, what remains has a Zeckendorf representation with a smallest
value that you will be able to remove on your subsequent turn. It turns out that
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the only -positions are heaps exactly the size of a Fibonacci number.
The Fibonacci numbers aren’t the only sequenceworth further examination. So

far, we have seen sequences pop up in a number of places, both in the distribution
of positions and grundy values of games. Let’s take some time now to look at
various kinds of sequences. The more comfortable we become with them, the
better equipped we will be to predict values and strategies of other games.

You are already familiar with arithmetic sequences. These are sequenceswhere
each term differs from the previous term by a constant. For example, consider
the sequence 2, 5, 8, 11, 14,…. Plotting these terms shows a straight line.

0 1 2 3 4

5

10

15

If we examine the differences between successive terms we see a constant.
2
⏟⏟⏟

+3

5
⏟⏟⏟

+3

8
⏟⏟⏟

+3

11
⏟⏟⏟

+3

14…

This sequence is arithmetic because we add a constant to each term to reach the
next. Since each term is 3 greater than the previous, we can write the sequence
using our recurrence relation notation as

an =

{

2 if n=0
an−1 + 3 otherwise

Of course, we can also write it in a closed form, which does not require, for
example, determining a99 in order to determine a100:

an = 2 + 3n

What if we encounter the sequence {bn} = 1, 3, 7, 13, 21, 31,…? Another plot
shows us that we need to think about something non-linear.
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0 1 2 3 4 5
0

10

20

30

Can we find a closed form in a similar way? Let’s examine the differences
again:

1
⏟⏟⏟

+2

3
⏟⏟⏟

+4

7
⏟⏟⏟

+6

13
⏟⏟⏟

+8

21
⏟⏟⏟
+10

31…

The differences are no longer constant, so the sequence is not arithmetic. How-
ever, the differences of the differences is constant:

2
⏟⏟⏟

+2

4
⏟⏟⏟

+2

6
⏟⏟⏟

+2

8
⏟⏟⏟

+2

10…

We say that the original sequence 1, 3, 7, 13, 21, 31,… isΔ2-constant, (an arith-
metic sequence is Δ1-constant). What this tells us is that a closed formula for the
sequence must have an n2 term. So,

bn = An2 + Bn + C.

We need only solve for A,B, and C , so let’s plug in the first few terms and see
what happens.

b0 = 1 = A02 + B0 + C = C
b1 = 3 = A12 + B1 + C = A + B + C
b2 = 7 = A22 + B2 + C = 4A + 2B + C

We have three equations and three unknowns, which we can solve using elimi-
nation or substitution. Wewill work through this case, then leave future examples
to the reader. Note that C = 1 so we substitute it in immediately.
3 = A + B + 1
7 = 4A + 2B + 1

2 = A + B (×2)
6 = 4A + 2B

4 = 2A + 2B
(−)6 = 4A + 2B
−2 = −2A
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0.9. Sequences of impartial game values

So C = 1 and A = 1. Substituting both of these into either the second or third
equation yields B = 1. Hence, bn = n2 + n + 1. This method of finding a closed
formula for a sequence is called polynomial fitting, and it works on any sequence
that isΔk-constant for some k ∈ ℕ.
It’s worth recognizing a very important quadratic sequence called the triangu-

lar numbers:
{Tn} = 0, 1, 3, 6, 10, 15, 21, 28, 36,…

These show up in a lot of mathematical places, especially in combinatorial situ-
ations. You should solve this yourself using polynomial fitting to see that Tn =
(n)(n+1)

2
. You may have seen them in Calculus as the sum of the natural numbers

up to n, in Graph Theory as the number of edges in a graph on (n + 1) nodes, or
just the number of objects needed to be arranged into a triangular shape.

What if our sequence isn’t Δk constant for any k ∈ ℕ? Consider the sequence,
its differences, and the plot below.

{cn} =
1
3 ⏟⏟⏟

+ 5
3

2
⏟⏟⏟
+10

12
⏟⏟⏟
+60

72
⏟⏟⏟
+360

432,…

0 1 2 3 4

0

100

200

300

400

(Note: Try to convince yourself that this sequence is neverΔk-constantwithout
finding successive differences.)

In this case, we can try to find successive ratios instead:

{cn} =
1
3 ⏟⏟⏟

⋅6

2
⏟⏟⏟

⋅6

12
⏟⏟⏟

⋅6

72
⏟⏟⏟

⋅6

432,…

Because there is a constant ratio r from one term to the next, we say this se-
quence is geometric. Again, let’s write it as a recurrence relation:
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0. Impartial Games

cn =

{

1
3

if n = 0
6 ⋅ an−1 otherwise

The closed formula for this sequence is cn = 1
3
(6)n.

So far we’ve only considered sequences whose recurrence form involves just
the previous term. What if there are more terms to consider? The Fibonacci
Numbers are one example, which we will look at in the exercises. Let’s consider
another here, along with a plot of the first few values. We will exclude the last
two since they dwarf the others and obscure any interesting shape to the curve.

{dn} = −3,−4,−2, 14, 82, 326…

0 0.5 1 1.5 2 2.5 3
−5

0

5

10

15

This sequence cannot be geometric since a positive follows a negative but the
sign does not simply alternate. And a short investigation shows there is no k ∈ ℕ
such that the sequence is Δk-constant, so it is not polynomial. With a lot of trial
and error we can write it in recurrence form:

dn =

⎧

⎪

⎨

⎪

⎩

−3 if n = 0
−4 if n = 1
5dn−1 − 6dn−2 otherwise

While determining the recurrence relation can be difficult, once we have it we
can use characteristic roots to find a closed formula. We begin by rewriting the
“otherwise” cases from the recurrence relation as

dn − 5dn−1 + 6dn−2 = 0

then replace the sequence terms with powers of the variable x:
x2 − 5x + 6 = 0.
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0.9. Sequences of impartial game values

This is called the characteristic equation for the sequence. If we happen to have
a dn−3 term then we use x3. In general, we let xk stand in for dn if the earliest
term in the relation is dn−k.
Nowwe solve the characteristic equation. In our case, this yields the character-

istic roots x = 2, 3. We can then assume that a closed formula for our sequence
looks like

dn = A2n + B3n.

Let’s solve for A and B as we did above, by examining the first couple terms.

d0 = −3 = A20 + B30 = A + B
d1 = −4 = A21 + B31 = 2A + 3B

Solving this yields A = −5, B = 2. Therefore, we find the closed form

dn = −5 ⋅ 2n + 2 ⋅ 3n.

As a side note, if we end up with repeated characteristic roots, i.e. if our char-
acteristic polynomial has the form (x−a)k(x− b)⋯ for some k > 1, then we can
use the repeated root method by setting our relation to

dn = A1an + A2nan +⋯ + Akn
kan + Bbn +⋯

So, for example, if our characteristic polynomial factors as (x−3)2(x+4) then
we can write

dn = A13n + A2n3n + B(−4)n

and solve as above.
There is another sequence type worth addressing in this text, but first we need

to introduce another ruleset.
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0. Impartial Games

WYTHOFF NIM
WYTHOFF NIM (alsoWythoff’s Game) is a two-heap NIM variant wherein
players may remove k > 0 sticks from either pile or both piles at the same
time.

→ → → 0

The first player removes two sticks from both heaps. The second player
then removes one to leave one in each. The first player responds by

removing the sticks from both heaps at once.

The reader can verify the first -positions for WYTHOFF NIM, visualized as a
list and plotted below. Note that if (x, y) ∈  then (y, x) ∈  , as well.

(1, 2), (3, 5), (4, 7), (6, 10), (8, 13), (9, 15), (11, 18), (12, 20), (14, 23),…

0 5 10 15 20 25 30
0

10

20

30

Notice that the -positions in two-heap NIM are  -positions in WYTHOFF
NIM. They are, in fact, positions fromwhich the next player can win immediately.
Subverting games in this way is a common method of developing new directions
for mathematical study.

At first there does not seem to be much of a pattern to the -positions in
WYTHOFF NIM. However, a closer examination of each coordinate reveals an
interesting property. Below we let an be the smaller and bn the larger of the co-ordinate pairs.

an = 1 3 4 6 8 9 11 12 14 16 17 19 …
bn = 2 5 7 10 13 15 18 20 23 26 28 31 …
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0.9. Sequences of impartial game values

If we begin with n = 1 we can see that an = ⌊n�⌋ and bn = ⌊n�2⌋, where ⌊x⌋,
the floor of x, is the greatest integer less than or equal to x, and � = 1+

√

5
2

is the
golden ratio we saw above. The sequences an and bn are examples of complemen-
tary Beatty sequences. A Beatty sequence can be defined with any r ∈ ℝ+ ⧵ ℚ
by

r = {⌊nr⌋}∞n=1,

and two Beatty sequences are complementary if their intersection is empty and
their union is ℤ+. It turns out that, for any r ∈ ℝ+ ⧵ℚ, the sequences r and sare complementary if 1

r
+ 1

s
= 1.

Exercises for 0.9
0) Prove that F (0) + F (2) + F (4) +…+ F (2n) = F (2n+ 1) − 1 for all n ∈ ℤ+.

⋆ 1) Find a closed formula for the sequence
−7,−2, 3, 8, 13, 18,…

(Answer 0.9.1 in Appendix)
2) Find a closed formula for the sequence

1
3
, 13
12
, 11
6
, 31
12
, 10
3
,…

⋆ 3) Find a closed formula for the sequence
1, 0, 3, 10, 21, 36, 55,…

(Answer 0.9.3 in Appendix)
4) Find a closed formula for the sequence

−1, 1, 9, 29, 67, 129, 221, 349,…
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0. Impartial Games

⋆ 5) Find a closed formula for the sequence
4, 2, 1, 1

2
, 1
4
, 1
8
,…

(Answer 0.9.5 in Appendix)
6) Find a closed formula for the sequence

−2, 6,−18, 54,−162, 486,…

⋆ 7) Find a closed formula for the recurrence relation

an =

⎧

⎪

⎨

⎪

⎩

2 if n = 0
3 if n = 1
2an−1 − an−2 otherwise

(Answer 0.9.7 in Appendix)
8) Find a closed formula for the recurrence relation

an =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if n = 0
1 if n = 1
0 if n = 2
6an−1 − 11an−2 + 6an−3 otherwise

9) Find a closed formula for the Fibonacci sequence

Fn =

{

1 n = 0 or 1
Fn−1 + Fn−2 otherwise

⋆ 10)List the first 8 terms in the Beatty sequence� . (Answer 0.9.10 inAppendix)
11) List the first 8 terms in the Beatty sequence √

2.
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0.9. Sequences of impartial game values

⋆ 12) Consider the Beatty sequence
√

3 = 1, 3, 5, 6, 8, 10, 12, 13,…

Find the first 5 terms of its complementary sequence s, and then determine the
appropriate value for s. (Answer 0.9.12 in Appendix)
13) Consider the Beatty sequence

√

5 = 2, 4, 6, 8, 11, 13, 15, 17,…

Find the first 5 terms of its complementary sequence s, and then determine the
appropriate value for s.
14) Determine the game value of the WYTHOFF NIM positions (1, 1), (2, 2), and
(3, 3).

⋆ 15) Come up with a sequence such that successive terms have ratios that them-
selves have a fixed ratio between them (i.e. like a Δ2-constant sequence but with
ratios instead of differences). (Answer 0.9.15 in Appendix)
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1. Impartial graph games

Since graphs are such important structures in the study of discrete mathematics,
it’s no surprise that there is a lot of active work in games related to graphs. We’ve
already seen one such game, NODE KAYLES. In this chapter, we will look at a
few more of them (there are lots!), their mathematical properties, and how they
can inform our study of graphs in general.

1.1. Geography

On the road again
Goin’ places that I’ve never been

Seein’ things that I may never see again
And I can’t wait to get on the road again

- Willie Nelson , “On the road again ”

Let’s examine a game that many readers have likely played before. It’s a com-
mon road trip game since it doesn’t require a board and can be played through
conversation.
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1. Impartial graph games

GEOGRAPHY
GEOGRAPHY is an impartial ruleset in which players take turns naming
towns, cities, or countries under the restrictions that no place may be
named twice, and the next place named must begin with the last letter of
the previously name place. “House” rules differ, sometimes allowing only
cities or only countries to be named.
AntwerP → PlymoutH → HalifaX→ XanadU
Beginning with Antwerp, subsequently named cities begin with the

ending letter of the previous play.

While it’s a fun game, there is not much analysis that we can do on GEOG-
RAPHY as defined. There are too many variations and too many ways to spell
transliterated places named throughout the world. However, what we can do is
generalize the game into something that we can analyze.

UNDIRECTED VERTEX GEOGRAPHY
UNDIRECTEDVERTEXGEOGRAPHY is an impartial game on an undirected
graph, wherein players take turns choosing a neighbor of the previously
chosen vertex, then deleting that previous vertex from the graph.

a

b

c

d e

f

→

b

c

d e

f

→

c

d e

f

Starting at vertex a, the first player moves to b and deletes a. The next
player then moves to e and deletes vertex b.
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1.1. Geography

In UNDIRECTEDVERTEXGEOGRAPHY, we always have to keep track of which
vertex is active at any given time. So a position in the game consists of a graph
and a token on one of the graph’s vertices. You may notice that UNDIRECTED
VERTEX GEOGRAPHY doesn’t quite capture what’s going in in GEOGRAPHY,
since using undirected edges implies that there is no particular direction to the
relationship between two nodes. Whereas we know that, in GEOGRAPHY, there
is a move from Plymouth to Halifax but not the other way. But we begin with the
undirected case, and will address the directed case later on.

UNDIRECTED VERTEX GEOGRAPHY is a graph game, which means that we
can spend some time playing around with graphs. That means asking CG-type
questions, as well as questions about graphs in general. For example, let’s exam-
ine which nimbers are achievable by positions in the game. The ruleset has NIM
dimension n if ∗2n−1 is achievable but ∗2n is not.

Note that not only can we find an UNDIRECTED VERTEX GEOGRAPHY po-
sition associated with every possible nimber, demonstrating that the ruleset has
infinite NIM dimension, but that these are achievable by restricting ourselves to
trees. In fact, UNDIRECTED VERTEX GEOGRAPHY starting at the root of a tree
is equivalent to TREE. Let’s look next at play on some graphs with cycles.

G H F KJ

What is the longest possible game on each of the graphs above? You can choose
to begin anywhere for your first move. Let’s look at the graphs one at a time.

In G, no matter where we begin we see that we can hit every vertex exactly
once. So a game on G can last for as many turns as the order of the graph. In
fact, G has an even stronger property of containing a hamiltonian cycle, a cycle
starting and ending at any single vertex in which every vertex is used exactly
once. We say that a graph with a hamiltonian cycle is a hamiltonian graph.
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1. Impartial graph games

Try to find a hamiltonian cycle inH . Give up? You probably noticed whyH
is not hamiltonian: it has a cut vertex. In other words, there is a vertex that, when
removed, leaves at least two connected components. No graph with a cut vertex is
hamiltonian because any path through this vertex cannot return to the start with-
out using the cut vertex again. However,H does have a path that starts and ends
on different vertices and includes all vertices of the graph, called a hamiltonian
path, making H traceable. So a game of UNDIRECTED VERTEX GEOGRAPHY
can last as many turns as the order ofH , as well.

The graph F has no cut vertices so F is two connected, though we do see a
pair of vertices that, if removed, separate the graph. We say that the connectivity
ofH is two, written k(H) = 2, since there are two vertices that, when removed,
disconnect the graph. Is F hamiltonian or traceable?

Since any hamiltonian path through F would have to include each of the two
cut vertices exactly once, but there are four components separated by these two
vertices, there is no way to reach all of them in a single hamiltonian cycle, let
alone a hamiltonian path. So F is not traceable.

It can be quite difficult to determine whether or not a graph is hamiltonian, but
there are some results that we can depend on.
Theorem 1.1.1. If G is a connected graph with cut set of size n which separates
G into at least n + 1 connected components, then G is not hamiltonian.

Proof. Label the cut set S = {v0, v1,… , vn−1} and let U = {u1, u2,… , un} bevertices such that ui is in component i after removing all the vertices in S from
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1.1. Geography

the graph G. Let C be a longest possible cycle in G. Any traversal of C that
includes two vertices from U must include at least one element from S between
them. There is no cycle in G that includes more than |S| = n elements from
U , and hence not every vertex in U can be on the cycle. Therefore, G is not
hamiltonian.
Graph J is an example of a bipartite graph. Its vertices can be partitioned

into two sets X and Y , each of which has no edges, while some edges may exist
between X and Y . In a bipartite graph, all edges adjoin vertices in different
partite sets. We can employ Theorem 1.1.1 to see that, by removing all vertices
on the left, we are left with four isolated vertices. So there is no hamiltonian
cycle in J . However, there is a hamiltonian path. So J is traceable, and a game
of UNDIRECTED VERTEX GEOGRAPHY can last for seven turns.
Finally, look at graph K . We can try to find a hamiltonian path exhaustively,

through trial and error, or we could look carefully at the properties of the graph.
Note that K is a 7 × 7 vertex grid with a single vertex removed, and a grid graph
is bipartite. You can see this by coloring alternating vertices, effectively parti-
tioning the vertices into two sets.

Our graph K is a 7 × 7 grid graph with a vertex removed. If we partition
the vertices, then we see that the missing vertex would be colored red. This
demonstrates that K is a bipartite graph with one set of size 25 and the other of
size 23. Not only does K not have a hamiltonian cycle by Theorem 1.1.1, but, as
you will see in the exercises, it is also not traceable.

Now, as with all impartial combinatorial games, we’d like to characterize the
-positions. Thankfully this is not too difficult for UNDIRECTED VERTEX GE-
OGRAPHY, at least in the undirected case.
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1. Impartial graph games

Math Diversion: Matchings
A matching in a graph G is a collection of edges with distinct endpoints.
Think of a pairing of people in your class. A matching saturates the end-
points of its edges, and is is perfect if it saturates every edge of the graph. For
example, in the even cycle C10 with vertices {v0, v1,… , v9} in which each
vertex vi has as its neighbors the vertices vi−1 and vi+1, under arithmetic mod
10, there is a perfect matching given by the set of edges

{v0v1, v2v3,… , v8v9} = {v2kv2k+1|0 ≤ k ≤ 4}

as well as the perfect matching
{v9v0, v1v2,… , v7v8} = {v2k−1v2k|0 ≤ k ≤ 4},

but odd cycles do not have perfect matchings.
Consider the Petersen Graph below. Howmany perfect matchings can you

find?

A:.Therearesixperfectmatchinginthegraph.

We say that a matching M is maximal if it is not contained in a larger
matching. In other words, M is maximal if there is no edge outside of M
that doesn’t share one of its vertices with an edge inM . Try to find a graph
with a maximal matching that is not a maximum matching.
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1.1. Geography

A:.ApathgraphP2k+1on2k+1verticesforanyk∈ℤ+workshere.
Thereisaperfectmatchinginthegraph,butalsoamaximalmatching
excludingthetwoendpoints.

We can use matchings to determine the -positions in UNDIRECTED VERTEX
GEOGRAPHY.
Theorem1.1.2. AnUNDIRECTEDVERTEXGEOGRAPHY position (G, v) on graph
G with token on vertex v is in if and only if every maximummatching saturates
v.

Proof. First, assume that every maximum matching saturates v. We will demon-
strate that (G, v) ∈  . The first player can simply choose an edge in the maxi-
mum matching. The other player is forced to use an edge outside this matching,
to which the first player can, again, play along an edge in the matching, and so
on. If no such edge exists for the first player at any point then there must have
been another matching of the same size that did not saturate vertex v. So we have
found a strategy for the first player to win, and (G, v) ∈ .
Mirroring the above, if there is amaximummatching inG that does not saturate

v, then there must be a winning strategy for the second player always using edges
in this maximal matching. Hence (G, v) ∈  .

Exercises for 1.1
⋆ 0) Find the shortest possible game of UNDIRECTED VERTEX GEOGRAPHY in the
graph G above. (Answer 1.1.0 in Appendix)
1) Find the shortest possible game of UNDIRECTED VERTEX GEOGRAPHY in
the graphH above.
2) Find the shortest possible game of UNDIRECTED VERTEX GEOGRAPHY in
the graph F above.
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1. Impartial graph games

⋆ 3) Find the shortest possible game of UNDIRECTED VERTEX GEOGRAPHY in the
graph J above. (Answer 1.1.3 in Appendix)

4) Find the shortest possible game of UNDIRECTED VERTEX GEOGRAPHY in
the graph K above.

⋆ 5) Is the Petersen Graph hamiltonian? Is it traceable? (Answer 1.1.5 in Ap-
pendix)

6) Remove any single vertex from the Petersen Graph. Is the resulting graph
hamiltonian? Is it traceable?

7) Research the Petersen graph and find one interesting fact about it

⋆ 8) Prove that every tree is bipartite. (Answer 1.1.8 in Appendix)

9) Prove that any bipartite graph G with parts X and Y , |X| < |Y | − 1 is not
traceable.

⋆ 10) Let Cn be the cycle graph on n vertices (drawn as an n-gon). Find a formula
for the size L(Cn) of the largest possible matching in Cn, and then find a formula
for the size S(Cn) of the smallest possible maximal matching in Cn, in terms of
n. (Answer 1.1.10 in Appendix)

11) Let P in be the pinwheel graph on n vertices (drawn as single vertex with n−1neighbors forming triangles in pairs, with potentially one pendant edge). Find a
formula for the size L(P in) of the largest possible matching in P in, and then finda formula for the size S(P in) of the smallest possible maximal matching in P in,in terms of n.
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1.2. Undirected Edge Geography

1.2. Undirected Edge Geography

I’ve been everywhere, man
I’ve been everywhere, man
Across the deserts bare, man

I’ve breathed the mountain air, man
Of travel I’ve had my share, man

I’ve been everywhere

- Geoff Mack , “I’ve been everywhere ”

Next we consider another variant of GEOGRAPHY.

UNDIRECTED EDGE GEOGRAPHY
UNDIRECTED EDGE GEOGRAPHY is played similarly to UNDIRECTED
VERTEX GEOGRAPHY, but with the modification that once an edge is
played, only that edge is removed from play. Vertices remain.

�

�



�

�
�

�

�
→

�

�



�
�

�

�
→

�

�



� �

�

The first player moves along edge � . The second player responds by
moving along edge �.

In UNDIRECTED EDGE GEOGRAPHY, players remove edges instead of vertices
as play progresses. This naturally leads to the same question we answered regard-
ing UNDIRECTED VERTEX GEOGRAPHY: What is the longest possible game? To
answer this, let’s return to the same graphs we looked at last time.
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1. Impartial graph games

G H F KJ

For each graph, try to start at a single vertex and generate a tour using every
edge once and only once. This is called an Euler Tour. Any Euler Tour that starts
and ends at the same vertex is an Euler Circuit.

You’ll notice that this is impossible for any of the graphs shown. Any vertex
with an odd number of neighbors, i.e. a vertex with odd degree, must be the first
or last vertex in this sort of tour, and each of the graphs shown have more than
two vertices with odd degree. But is this necessary condition of having no more
than two vertices of odd degree sufficient for a graph to have an Euler Tour? Let’s
instead examine another graph with fewer vertices of odd degree. Call the graph
below X.

a

b

c

d e

f

Try tracing out an Euler Tour in X. You now know that, if it exists, it must
begin and end at the vertices c and e, since these are the only vertices of odd
degree. And you should see that, yes, it’s possible. Let’s talk a bit about Euler
Circuits before addressing the sufficiency question. What must be true about a
graph for it to contain an Euler Circuit?

Similar to the necessary condition for a graph to have an Euler Tour, any graph
with an Euler Tour must have all even degrees. In fact, this condition is both
necessary and sufficient.
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1.2. Undirected Edge Geography

Theorem 1.2.1. A connected graph G has an Euler Circuit if and only if all its
degrees are even.

Proof. Wemust prove both directions. First, any circuit contributes an even num-
ber of adjacencies to each vertex in the circuit, as any traversal along the circuit
must both enter and exit each vertex at each visit. So it is impossible for a graph
with any vertices of odd degree to contain an Euler Circuit.

Next, assume the connected graph G has vertices of only even degree. Label
the vertices {v0, v1,… , vn} and their respective degrees {d(v0), d(v1),… , d(vn)}.Beginning at any vertex, letC be a circuits containing the vertices {vc0 , vc1 ,… , vck}.Remove the edges fromC from the graphG and what remains is another graph on
the same vertices with only even degrees. Repeating this process until we have re-
moved all edges fromG, we end up with a collection of circuits {C0, C1,… , Cj}.Any two circuits sharing at least one vertex can be stitched together in a natural
way to result in a single circuit. If we repeat this process as many times as possi-
ble, then we will end up with a single circuit that includes every edge inG exactly
once.

Determining whether or not a graph has en Euler Circuit is much easier than
determining whether or not it has a Hamiltonian Cycle. We need only examine
the degrees. Note that there was no requirement within our proof that the graph
be simple. I.e., any connected graph with all even degrees, whether or not it
contains multiple edges, has an Euler Circuit. Let’s return to the graph X above.
We know from Theorem 1.2.1 that X does not contain an Euler Circuit, but it
does contain an Euler Tour. In fact, we can show that having exactly two vertices
of odd degree is both a necessary and a sufficient condition for a graph to have
an Euler Tour.
Theorem 1.2.2. A connected graph G has an Euler Tour if and only if it has
exactly two vertices of odd degree.

Proof. No graph with more than two vertices of odd degree can have an Euler
Tour by our argument above, and the endpoints of an Euler tour must have odd
degree. IfG is a graph with two vertices, u and v, with odd degree, then consider
the graph G′ composed of a copy f G with the addition of the edge uv. By The-
orem 1.2.1, the graph G′ has an Euler Circuit. This circuit, minus the additional
edge uv, is an Euler Tour in the graph G.
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1. Impartial graph games

In order to prove Theorem 1.2.2 we needed the flexibility to include any type
of graph, even one with multiple edges, in Theorem 1.2.1.

Exercises for 1.2

⋆ 0) What, if any, are the restrictions on n and m such that Km,n has (i) an euler
circuit and (ii) an euler tour? (Answer 1.2.0 in Appendix)
1) For which values of n do Kn,Wn, Kn,n, Cn, and Qn have euler circuits? Note
that Qn is the graph on 2n vertices where each vertex is a bit string of length n,
and an edge exists between any two vertices whose bit strings differ in exactly
one position (e.g. 1101 is adjacent to 0101, 1001, 1111, and 1100).
2) What is the fewest number of edges we need to add to the Petersen Graph to
give it (i) an euler circuit, and (ii) an euler tour? Draw the appropriate graphs.

1.3. Directed Geography

We round out this chapter on graph games by returning to GEOGRAPHY as defined
earlier. If every place on earth (and beyond) is the label of a distinct node in a
directed graphG, and we add a directed edge from one node to another whenever
the associated labels match the alphabetical requirements of GEOGRAPHY, then
G along with a token is a position in DIRECTED GEOGRAPHY. There is one
caveat, however. Note that G as we have defined it has cycles, like

Richmond ⇌ Denver.

We need to make sure to remove each vertex as its played, just as in UNDIRECTED
VERTEX GEOGRAPHY.
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1.3. Directed Geography

DIRECTED GEOGRAPHY
DIRECTED GEOGRAPHY is an impartial game on an undirected graph, and
a token on one of the vertices. A turn consists of moving the token along
an outgoing edge to a new vertex, then removing the prior vertex from
the graph. DIRECTED GEOGRAPHY was first known as GENEREALIZED
GEOGRAPHY, as it is a generalization of GEOGRAPHY to graphs. It is also
known as DIRECTED VERTEX GEOGRAPHY and often colloquially just as
GEOGRAPHY.

→ →

The token begins on the middle vertex. The first player moves it to the
right, deleting the middle vertex they came from. The second player then

uses the edge heading back to the left side.

Every impartial game graph we’ve seen in the book is actually a game of DI-
RECTED GEOGRAPHY! As you move a token in this game, you can imagine
traversing the game graph of any impartial game, until neither player has a move
remaining. Therefore, if we happen to find a nice, quick way to solve every game
of DIRECTED GEOGRAPHY, then we can solve every impartial game just as eas-
ily!

Consider a directed graph G. Just like the hamiltonian paths and cycles we
found while studying UNDIRECTED VERTEX GEOGRAPHY, we have hamiltonian
paths and cycles in directed graphs. Directed graphs have a new property, though,
that we haven’t seen in undirected graphs: strong connectedness. A directed
graph (digraph) is strongly connected if, for every pair of vertices u, v, there is
a directed path from u to v and a directed path from v to u. Consider the three
graphs below.
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1. Impartial graph games

D G H

Digraph D is strongly connected. We can see this because D has a directed
hamiltonian cycle. So, just as in UNDIRECTED VERTEX GEOGRAPHY, a game
of DIRECTED GEOGRAPHY could include every node, no matter which node the
game begins on.

What about G? You’ll notice that there is no way to get from the bottom ver-
tex to either vertex at the top of the digraph, so G is not strongly connected. The
digraph is composed of two strongly connected components (or strong compo-
nents): the component at the top is a six-cycle with a couple more arcs, and the
component at the bottom is a directed three-cycle. These two components are
joined by a pair of arcs, both oriented from the first to the second. So, in fact, no
path joins a vertex in the second strong component to a vertex in the first. How-
ever, choose any pair of vertices inG and label them u and v. There is a path from
u to v or a path from v to u. Although G is not strongly connected, it is weakly
connected.

Finally, let’s examine the digraph H . There is no hamiltonian cycle in H ,
which we know by Theorem 1.1.1. However, there is a directed hamiltonian path.
Furthermore, H is also strongly connected because for every pair of vertices u
and v, there is both a u−v path and a v−u path inH . It’s worth noting that having
a hamiltonian cycle, having a hamiltonian path, and being strongly connected are
all distinct properties. While being hamiltonian implies that a digraph is both
strongly connected and traceable, there are no other assumptions we can make
about these three digraph properties.
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Exercises for 1.3
⋆ 0) Prove that if a digraph is strongly connected then it is also weakly connected.
(Answer 1.3.0 in Appendix)
1)What is the greatest possible number of turns in a game of DIRECTED GEOG-
RAPHY on graph G above?
2) What is the shortest possible game of DIRECTED GEOGRAPHY on graph G
above?
3) Sketch a weakly connected digraph with four strong components.

⋆ 4) Consider the game of GEOGRAPHY played on Canadian Provinces and Ter-
ritories. Draw the corresponding DIRECTED GEOGRAPHY graph. Label your
vertices with the two-character shorthands. You don’t know what those are,
eh? Here’s the list: Alberta (AB), British Columbia (BC), Manitoba (MB), New
Brunswick (NB), Newfoundland and Labrador (NL), Nova Scota (NS), North-
west Territories (NT), Nunavut (NU), Ontario (ON), Prince Edward Island (PE),
Quebec (QC), Saskatchewan (SK), Yukon (YT). (Answer 1.3.4 in Appendix)
5) Programming Question: Let a GEOGRAPHY position be given by a pair, a list
of strings, then a single string inside that list. Write a function get_options that
takes a position like that and returns the list of options from that position. (These
options should each be a pair of the same form.)

For example, if position G = ([’ogunquit’, ’saco’, ’orlando’], ’saco’),
then
get_options(G) will return a list with two options:
[([’ogunquit’, ’orlando’], ’ogunquit’),
([’ogunquit’, ’orlando’], ’orlando’)]

6)Use your answer from exercise 1.3.5 towrite a function print_geography_nimbers
that takes a list of strings and prints out the nimber of each GEOGRAPHY posi-
tion starting from each string in the list. (You can reuse the mex function we
wrote previously, and you’ll probably want to write a get_nimber(geography)
function.)

Here’s a sample case using the example above (in Python interactive mode):
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1. Impartial graph games

»> print_geography_nimbers([’ogunquit’, ’saco’, ’orlando’])
([’ogunquit’, ’saco’, ’orlando’], ’ogunquit’): *0
([’ogunquit’, ’saco’, ’orlando’], ’saco’): *2
([’ogunquit’, ’saco’, ’orlando’], ’orlando’): *1

7) Prove the following statement: For any n ∈ ℕ where n ≥ 1, there exists a
directed graph with n nodes such that a DIRECTED GEOGRAPHY position starting
on one vertex from that graph, G, is equal to ∗ (n−1). (Hint: you can use strong
induction to prove this constructively by creating a working graph.)
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Tick Tac Toe
no two turns in a row:

that’s cheating

- Lisa Loeb, “Sick, Sick, Sick”

1
So far we have only studied impartial rulesets, where both players always have

the same moves. Most combinatorial games that people are familiar with don’t
fall into that category. For example, in CHECKERS (or DRAUGHTS2) each player
may only move pieces of their own color. (Black for L and red for R.) For
the remainder of this text, we will be learning how to evaluate partisan games:
rulesets where the players may have different move options.

Since there are many two-player games that use two colors, there is a conven-
tion for which color “belongs” to each player:

L R
bLue Red
bLack White
Positive Negative
True False

Sometimes the players are named Louise and Richard3 for L and R, respec-
1https://www.lisaloeb.com/sick-sick-sick
2The authors of this text are from the U.S., so we know the game as “Checkers”.
3Named after Louise and Richard Guy. Richard was one of the three authors of the text Win-
ning Ways for your Mathematical Plays. Along with coauthors John H. Conway and Elwyn
Berlekamp, they introduced the notation we use for partisan games.
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2. Partisan Games

tively. Because of this, in many published CGT articles and books, you may see
L referred to with feminine pronouns and R with masculine pronouns.
Sometimes we need another color to refer to game pieces or markers that either

player can use for their move. These are usually either given a Green or Gray
color.

2.1. Partisan Game Notation

For impartial game positions, we used this notation: G = ∗
{

0, ∗, ∗3, ∗6
}. For

partisan positions, we will need to separate the moves into two sections: the op-
tions for each of the two players. Our notation, known as option notationwill use
the same braces as for sets, but will be divided into two “sides”, one each for L
and R.

In option notation, every partisan game position can bewritten as: {L’s options |R’s options }.
We can consider any impartial game to also be partisan, so we could rewrite the
impartial position above:

∗{ 0, ∗, ∗3, ∗6
}

=
{

0, ∗, ∗3, ∗6 |
|

0, ∗, ∗3, ∗6
}

Some common values we’ll see are: 0 = ∗{ } = { | } and ∗= ∗
{

0
}

=
{

0 |
|

0
}. This last one, for example, is colloquially pronunced “zero slash zero”.

From this point on, we will forego the impartial notation and focus on option
notation4.

Sometimes we can simplify a partisan position to a single nimber, even if the
two sides don’t have exactly the same nimbers on each side. For example:

{

0, ∗2 |
|

0, ∗3
}

=∗

This position resolves to ∗ because the mex of the nimbers of both sides is the
same. We can check our work by showing that { 0, ∗2 |

|

0, ∗3
}

+ ∗∈  :

• If L goes first, and chooses the zero option of either component, then R
can respond by moving to the zero option of the other. IfL instead chooses

4The impartial notation we have used is not standard in CGT.
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to move the first component to ∗ 2, then R can choose the ∗ option from
that, returning the position to 0.

• If R goes first, L will have the same choices to return the sum to a zero
position. If R chooses the zero from either component, then L can choose
the zero from the other component. If R instead picks the ∗3 option from
the first component, L can choose the ∗ option from ∗ 3, moving the sum
to zero again.

Notice that unlike impartial games, to show that a position is in  , we have to
show that neither of the players has a winning move option. If they have different
options, then we have to argue none of them can win by considering the two
separate cases where they each go first, as above.

If the two sides contain only nimbers and both sides have the same mex of
those nimbers, then the value is the nimber of that common mex. However, if
the two sides don’t have the same mex, then we cannot simplify the result into a
single nimber. For example, there is no simpler notation for { 0 |

|

0, ∗
}.

Nimbers appear in many partisan games, especially ∗. One easy example oc-
curs in the game KONANE.
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KONANE
KONANE is a traditional Hawaiian game that is similar in many ways to
Checkers or Draughts. Black and white stones begin on a grid in an alter-
nating fashion, with two adjacent stones removed:

Each turn, the current player uses one of their stones to jump over an oppo-
nent’s orthogonally-adjacent piece to the empty spot on the other side. If
there is another opponent piece (and empty space behind) along the same
line, the jumping can continue if the player wishes.
GENERALIZED KONANE is a variant where starting stones don’t need to
alternate colors. In other words, two stones of the same color can be or-
thogonally adjacent.

→ →

R makes the first move by jumping their lower piece up. This sets up a
big move for L, who makes a triple jump.

Let’s use option notation to find and simplify the value of a KONANE position:
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2.1. Partisan Game Notation

=

{

|

|

|

|

|

|

}

=
{

0 |
|

0
}

= ∗

The exercises below include some more KONANE problems.

Exercises for 2.1

⋆ 0)Rewrite ∗{ 0, ∗, ∗5, ∗7 } in option notation. Do not simplify to a single nimber
value. (Answer 2.1.0 in Appendix)
1)Rewrite ∗{ 0, ∗9, ∗10 } in option notation. Do not simplify to a single nimber
value.

⋆ 2) Simplify { 0, ∗, ∗2, ∗4 |
|

0, ∗, ∗2, ∗4
} to a single nimber. (Answer 2.1.2 in

Appendix)
3) Simplify { ∗, ∗2, ∗3, ∗4, ∗5 |

|

∗, ∗2, ∗3, ∗4, ∗5
} to a single nimber.

⋆ 4) Can we simplify { 0, ∗, ∗2, ∗3 |
|

0, ∗, ∗2
} to a single nimber? If so, provide

that nimber value. (Answer 2.1.4 in Appendix)
⋆ 5) Can we simplify {

0, ∗, ∗2, ∗4 |
|

0, ∗, ∗2, ∗5, ∗6
} to a single nimber? If so,

provide that nimber value. (Answer 2.1.5 in Appendix)
6) Can we simplify { 0, ∗, ∗3, ∗5, ∗7, ∗9 |

|

0, ∗, ∗3, ∗4, ∗5, ∗6
} to a single nim-

ber? If so, provide that nimber value.
7) Can we simplify { 0, ∗, ∗2, 3, ∗4 |

|

∗, ∗2, ∗3
} to a single nimber? If so, pro-

vide that nimber value.
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⋆ 8) Can we simplify
{

∗, ∗2, ∗4, ∗5 ||
|

∗2, ∗4,
{

0 |
|

0
}

}

to a single nimber? If
so, provide that nimber value. Show your work. (Answer 2.1.8 in Appendix)

9) Can we simplify G =
{

{ | } ,
{

0 |
|

0
}

|

|

|

{

{ | } |
|

0
}

, { | }
}

to a single
nimber? If so, provide that nimber value. Show your work.

10)Canwe simplifyG =
{

{ | } ,
{

0 |
|

0
}

, ∗4, ∗5 ||
|

{

0, ∗, ∗2 |
|

∗, 0, ∗5 ∗2
}

, ∗5, 0, ∗
}

to a single nimber? If so, provide that nimber value. Show your work.

⋆ 11)What is the value of theKONANE position
? You can simplify your analysis by using the result from the section text. (An-
swer 2.1.11 in Appendix)

12)What is the value of theKONANE position
? You can simplify your analysis by using the result from the section text.

⋆ 13) What is the value of the KONANE position ? You can

simplify your analysis by using the result from the section text. (Answer 2.1.13
in Appendix)

14)What is the value of the KONANE position ?

15) Write a function, is_nimber(left_nimbers, right_nimbers) that re-
turns whether a game position with only those two lists of nimbers is itself a
nimber.
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2.2. Game Trees and Outcome Classes

Let’s look at another game where the players have different moves.

COL
COL is a game played on a graph. L uses the color Blue, whileR uses Red.
Each turn, a player chooses an uncolored vertex, v, that is not adjacent to
any vertices in their color, then paints v with their color.

→ →

R makes the first move, choosing the only vertex they can to color red.
After that, L also has only one move, so they color that vertex blue.

The big aspect to take note of off the bat is that each player is restricted to
only one color. L colors vertices Blue (and cannot use Red) and R can likewise
only use Red. Since these moves are restricted to only one player, we want to
represent that access in our game trees as well as our formal notation. To do this,
our partisan game trees will look quite different from the impartial ones. Instead
of showing children with connecting lines that only travel parallel to the x and y
axes, we will draw straight lines. Those extending down and to the left indicate
options only for L; those extending down and right indicate options only for R.

Current Position

Right option yRight option xLeft option bLeft option a

Let’s jump into an example and draw the entire tree for COL on: :
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Just as with impartial games, this game tree gives us the full picture of what can
happen from the initial position. An energetic student might want to immediately
start evaluating this to determine the value or outcome class. Unfortunately, our
old tools aren’t quite enough this time.

Some of our new positions have values we’ve already seen. For example, both
and have no moves available. They are both equal to { | } =

∗{ } = 0.
is another matter, however. =

{

0 |
|

}, because the left
player can move to , which, as we said, is equal to 0. This doesn’t fit
nicely into our outcome classes and  . Here:

• The next player wins if they are L, but loses if they are R.
• The previous player wins if they are L, but loses if they are R.
In other words, no matter which player goes first, L has a winning strategy.

The same thing could happen for R (e.g. on ). To handle these two
new cases, we’ll need some new outcome classes for partisan games!

• , “Positive”: the set of positions whereL has a winning strategy nomatter
who goes first.

• , “Negative”: the set of positions where R has a winning strategy no
matter who goes first.

In impartial games, we didn’t need these two because they couldn’t happen. If
L could win by going first, then R could use that same strategy if they went first.
Thus, impartial positions are always in or  .

To say this another way, we can lay out all of our outcome classes in this table:
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2.2. Game Trees and Outcome Classes

R, Playing First
o(G) Wins Loses

L First Wins  
Loses  

Thankfully, we can still determine the outcome class of a game based recur-
sively on the outcome classes of the options. For each player, we are looking for
a winning move.

• L has a winning move if and only if they can move to a  or  option.
• R has a winning move if and only if they can move to a  or  option.
How can we label our vertices? We are still going to use the basic idea from

doing this with impartial games, except that each level is a bit more complicated.
Let’s label the outcome classses on our tree above as an example. First, just as
before, we label the terminal nodes as zero. From there we’ll determine the other
outcome classes, which I’ve labelled with X, Y , and Z.

X

Z



Y



To figure out the outcome class of Z, o(Z), we look at the options and see
which players have a winning move.

• L has a move (their only move), to a -position, so they do have a winning
move. Thus, we’ve narrowed down Z’s outcome class to either or .
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• R doesn’t have any moves, so they don’t have a winning move. Thus, the
outcome class is not and must be .

To find o(Y ), we see thatL doesn’t have any moves, butR does have a winning
move, so o(Y ) = . Before we find the outcome class of the root position, let’s
update the tree:

X









At the root, we have one move for L and two moves for R.
• L has only a move to , which is not a winning move. L does not have a

winning move, so the overall outcome class is either in  (if R does have
a winning move) or  (if R doesn’t have a winning move).

• R has a move to  (not winning) and a move to  (a winning move). R
does have a winning move, (that second move), so o(X) = .

R has a winning move and L does not, so the overall outcome class is .
Drawing the game tree and labelling the positions with outcome classes is a fine
proof of this.

Just as with impartial games, in many cases we don’t have to draw out the entire
tree. If we are evaluating options, as soon as we find a winning one for one player,
we no longer need to analyze the other options for that player. To prove that there
are no winning options for a player, however, we need to analyze all of them to
demonstrate that. A trimmed game tree is still a working proof of the outcome
class of a position.

In our example, we can simplify things a bit by removing one of R’s options:
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X





We can transform back and forth between games written out formally and
written out as a game tree. Often it is hard to visualize the notation and a game
tree can really help out. For example, if we are looking to find the outcome class
of

{

{

0 |
|

0
}

|

|

|

{

|

|

0
}

}

, it’s probably easier to first look at this in tree form:
{

{

0 |
|

0
}

|

|

|

{

|

|

0
}

}

{

|

|

0
}

0

{

0 |
|

0
}

00
Now we can label the positions and get the overall outcome class:

{

{

0 |
|

0
}

|

|

|

{

|

|

0
}

}



{

|

|

0
}



0


{

0 |
|

0
}



0


0
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Computational Corner: Partisan Outcome Classes
To determine between the four outcome classes, we’ll have to use separate
lists for the left and right options. We might want to write a function to do
this:
>>> get_outcome([’R’, ’P’, ’L’], [’N’, ’L’, ’N’])
’L’

Inside we’ll need to determine each player’s winnability separately. Let’s
start by writing a function to determine whether left has a winning move.
We’re going to do a cute thing with Python sets. If L has a winning option,
we’ll return the set with ’L’ and ’N’. Otherwise, we’ll return the set with
’R’ and ’P’.
def get_outcomes_by_left(left_outcomes):

”’Returns the possible overall outcomes depending on whether
Left can win.”’

outcomes = set()
for outcome in left_outcomes:

if outcome in ’PL’:
# we found a winning move!
outcomes.add(’L’)
outcomes.add(’N’)
return outcomes

# didn’t find a winning move
outcomes.add(’R’)
outcomes.add(’P’)
return outcomes

If we include a similar function for the right outcomes, then we can put
them both together:
def get_outcome(left_outcomes, right_outcomes):

outcomes_by_left = get_outcomes_by_left(left_outcomes)
outcomes_by_right = get_outcomes_by_right(right_outcomes)
outcomes = outcomes_by_left.intersection(outcomes_by_right)
outcome = outcomes.pop()
return outcome
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2.2. Game Trees and Outcome Classes

In that code, each of the inner functions returns a set of two possible out-
come classes. We intersect those two sets to get the overall whole outcome
class, then use the pop method to get what should be the only element in
there.

Exercises for 2.2

⋆ 0) Draw out the entire game tree for and label with outcome classes
to show that it is in . Make sure your edges are pointing in the right direction!
(Answer 2.2.0 in Appendix)
1)Draw out the entire game tree for and label with outcome classes
to show that it is in . Make sure your edges are pointing in the right direction!
2) Draw a trimmed game tree for and find its outcome class. In
order to keep the size reasonable, you can safely assume that outcome classes are
equivalent if we rotate the board 180-degrees. E.g. o( ) = o(
).

⋆ 3) Draw out the entire (partisan) game tree for . Label your tree with the
outcome classes. Do you get the correct outcome class that you would using an
impartial game tree? (Answer 2.2.3 in Appendix)

⋆ 4) Label all positions of the following game tree with their outcome classes.
a

c

ed

b

(Answer 2.2.4 in Appendix)
5) Label all positions of the following game tree with their outcome classes.
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a

c

e

b

d

⋆ 6) Label all positions of the following game tree with their outcome classes.

a

ed

ji

c

ℎ

b

gf (Answer 2.2.6 in Appendix)

7) Label all positions of the following game tree with their outcome classes.

a

d

iℎ

c

g

kj

f

b

e

⋆ 8) Label all positions of the following game tree with their outcome classes.
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a

d

i

m

ℎ

lk

c

g

j

b

fe

(Answer 2.2.8 inAppendix)
9) Label all positions of the following game tree with their outcome classes.

a

c

e

g

i

b

d

f

ℎ

⋆ 10)What is the smallest game tree you can draw that has an outcome class of?
Can you find a COL position that has that tree? (Answer 2.2.10 in Appendix)

⋆ 11) Translate this position into a game tree and determine the outcome class:
{

{

0 |
|

}

,
{

|

|

0
} |

|

|

|

{

{

|

|

0
}

|

|

|

{

|

|

0
}

}

}

. (Answer 2.2.11 in Appendix)

12) Translate this position into a game tree and determine the outcome class:
{

{

|

|

0
}

,
{

|

|

|

{

0 |
|

}

}

|

|

|

|

0,
{

0 |
|

0
}

}

.
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13) Translate this position into a game tree and determine the outcome class:
{

{

{

0 |
|

0
}

|

|

|

}

,
{

0 |
|

} |

|

|

|

{

0 |
|

}

,
{

{

0 |
|

}

|

|

|

}

}

.
You can simplify the game tree by not repeating analysis for positions after

you find the outcome class once (in this problem).
14) Write get_outcomes_by_right(right_outcomes) to complete the ex-
ample in the section.

2.3. Partisan Game Sums

Just as with impartial games, we can add partisan games together. The basic idea
is the same as we saw in Section 0.4: if we add G and H together, then on any
turn, the current player picks one of the two games to make a move on and does
nothing to the other. The complication here, of course, is that the players have
different sets of options on both G andH .
To help us define this formally, we’ll first introduce some new notation. For any

game, G, GL (“the left options of G) is the set of options of G for L. Similarly,
GR (“the right options of G”) is the set of options for R. For example, if G =
{

0, ∗ |
|

}, then GL = {0, ∗} and GR = ∅.
This means that

G =
{

GL |
|

|

GR
}

even though we don’t write out the extra squiggly-braces inside the formal game
notation5.

Now what happens if we add G andH? What are (G +H)L and (G +H)R ?
For L, they can either make on of their moves on G and add that to all of H ,

or make a move onH and add it to all of G. So:
(G +H)L = {gl +H | gl ∈ GL} ∪ {G + ℎl | ℎl ∈ HL}

Then, similarly,
(G +H)R = {gr +H | gr ∈ GR} ∪ {G + ℎr | ℎr ∈ HR}

5This is a bit of an abuse of notation, but it is commonly used in combinatorial game theory.
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This means that
G+H =

{

{gl +H | gl ∈ GL} ∪ {G + ℎl | ℎl ∈ HL} ||
|

{gr +H | gr ∈ GR} ∪ {G + ℎr | ℎr ∈ HR}
}

As you can imagine, this gets a bit onerous. We can simplify this definition,
but we need to extend some other notation.

We can generalize our sum notation to work for single games added to sets of
games so that if we add a single position, G, to a set of positions, , the sum is
a new set of positions with G plus each element of :

G + =  + G = {G +H |H ∈ }

Now, with this new notation, we can rewrite our sum of G andH :
G +H =

{

(GL +H) ∪ (G +HL) ||
|

(GR +H) ∪ (G +HR)
}

6

Let’s include another partisan ruleset to our repetoire and then try out some
game sums.

TOPPLINGDOMINOES
TOPPINGDOMINOES is a game played on rows of dominoes colored Red,
Blue, or Green. Each turn, the current player picks either a green domino
or domino of their color and a direction either left or right. (Either player
can choose any direction.) The chosen domino and all other dominoes in
the chosen direction are then “knocked down” and removed from play.

→ →

L makes the first move, knocking the fourth domino to the right. R
makes the second move, knocking the second domino to the left.

Let’s do a simple sum example of TOPPLING DOMINOES and COL: +
.
6You might see this instead written as G +H =

{

GL +H,G +HL |

|

|

GR +H,G +HR
}

.
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=
{

0 |
|

} and =
{

|

|

|

}. Thus, + =
{

0 + , +
|

|

|

|

|

+
}

.
Let’s quickly cover each of those options in the sum.

• 0 + = is the result if L knocks over the domino on their turn. (This
is an element of the form gl +H .)

• + = is the result if L fills in the COL node. (This is an element of
the form G + ℎl.)

• + = is the only option for R; they play on the COL component.
(This is an element of the form G + ℎr.)

• There is no element of the form gr +H because R doesn’t have any moves
in the TOPPLING DOMINOES component.

The sum game tree (with some of the elements simplified) looks like this:

+

00
By labelling the outcome classes, we can see that the overall outcome class is

. The individual components, and are in  and  respectively.
(More specifically, we know one of the values, as =

{

0 |
|

0
}

= ∗
{

0
}

=∗.
We don’t (yet) have a symbol for the value of , though we will in section 3.1.)
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2.3. Partisan Game Sums

It would be nice and easy if it turned out that the sum of two games, one in 
and one in  , always resulted in a game in , but this is not the case. Consider
{

0 |
|

∗
}

+
{

0 |
|

0
}:

• {

0 |
|

∗
}

∈ , because L has a winning move, but R doesn’t.
• {

0 |
|

0
}

=∗∈ , as we already know.
• But, { 0 |

|

∗
}

+
{

0 |
|

0
}

∈ , becauseL has awinningmove (to{ 0 |
|

∗
})

and R also has a winning move (to ∗ + ∗= 0).
Thankfully, it does turn out that these are the only two options. In general, we

can make a table to describe the possible outcome classes of sums:
+    
    or anything
    
  or   anything  or
 anything   or 

Some things to notice about these outcome sums:
• Components in  don’t change the overall outcome class at all. This works

out well, because  continues to act like the value 0.
•  +  →  and + → , as we might expect.
•  makes things pretty complicated since it includes more values than just

the non-zero nimbers, such as { 0 |
|

∗
}

+ ∗, as we saw before.
When we start learning about more game values, we’ll be able to use sums

more fully, just as we did with impartial games. In the meantime, many of the
combinations do result in one outcome class. If it doesn’t, we’ll have to use the
sum’s game tree to reason about the overall class.

Exercises for 2.3
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0) Consider the following TOPPLING DOMINOES position:
Use a game tree to determine the outcome class. Justify your answer. Hint:

you can save some time by reusing positions, but make sure all the arrows are
pointing in the correct directions.

⋆ 1)What is the outcome class of + ? (Answer 2.3.1 in Appendix)

2)What is the outcome class of + ?

3)What is the outcome class of + ?

⋆ 4) What is the outcome class of + ? (Answer 2.3.4 in
Appendix)

5)What is the outcome class of + ?

6)What is the outcome class of + ?

⋆ 7)What is the outcome class of + ? (Answer 2.3.7 in Appendix)

8)What is the outcome class of + ?

⋆ 9)What is the outcome class of + ? (Answer 2.3.9 in Appendix)

2.4. Negatives and Equality

So far we know how to add positions together. It would be helpful to be able to
subtract as well. In normal math, x − y is the same as x + (−y). The same is
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true for combinatorial games; G − H = G + (−H). That means that in order
to subtract games, we can use our game addition if we know how to negate a
position.

For many rulesets, negating a position is easy in practice (with actual game
pieces) and more difficult notationally. Often you can get the negative just by
swapping all the pieces. For example, − = .

Let’s take a look and see what the options for these two opposite games are:
G = =

{

, |

|

|

}

H = =
{

|

|

|

,
}

Do you see a relationship between the options? The left options ofG are nega-
tives of the right options ofH and the right options of G are negatives of the left
options ofH . In fact, this is exactly how we define the negation operation: swap
the sides the options are on and negate them each. Using our notation, if G =
{

gL1 , g
L
2 , g

L
3 ,… , gLn

|

|

|

gR1 , g
R
2 ,… , gRm

}

, then−G =
{

−gR1 ,−g
R
2 ,… , gRm

|

|

|

−gL1 ,−g
L
2 ,… ,−gLn

}

.
Let’s look at a simpler example, and go all the way down to the zeroes to make

sure that the color-swapping plan holds up:

− =
{

− ,− |

|

|

−
}

=
{

{

|

|

|

−
}

, 0
|

|

|

|

{

− |

|

|

}

}

=
{

{

|

|

0
}

, 0 ||
|

{

0 |
|

}

}

and
=
{

, |

|

|

}

=
{

{

|

|

|

}

, 0
|

|

|

|

{

|

|

|

}

}

=
{

{

|

|

0
}

, 0 ||
|

{

0 |
|

}

}

Indeed, swapping the colors has the same effect as negating a COL position!
Negation is also a useful tool for showing that two positions are equivalent.

Just as with numbers, two games are equivalent if their difference is zero:
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G = H ⇔ G −H = 0 (⇔ G −H ∈ )

For example, we might want to determine whether is equal to the COL

position . We can do this by finding the outcome class of − ,
which is equal to + :

+


+








Since the outcome class of the difference is  , = .
As another example: what happens if we check whether equals

?
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+
∉ 

+
+


+








L has a winning move (to the zero we found before) so the sum cannot be in
 . This means that ≠ .

It’s important to point out that “equals” here doesn’t necessarily mean “exactly
the same as”. The two positions { | } and

{

{

|

|

0
}

|

|

|

{

0 |
|

}

}

are both equal
to 0, even though the second one has (losing) options for both players.

It will also be helpful to know that any impartial game is always its own neg-
ative: − ∗ n =∗ n. Unfortunately, there are some elements of  that are not
strictly impartial, and are thus not equal to their own negative. ( does not have
this problem, because −0 = 0.) In general,

o(G)    
o(−G)    
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Activity: Testing Equality
Sit down with a friend and use negatives to play some games to figure out
whether the equality holds between these games or not: (Hints: TOPPLING
DOMINOES positions can be negated by flipping the colors of the domi-
noes.)

1. ?
=

2. ?
=

3. ?
=

4. ?
=

5. ?
=

We now have a tool to determine whether any two game positions are equiv-
alent. As we continue, we will learn tricks to expedite this process. Here are a
few we already know that we can use in specific cases:

• If they are both impartial, then we can find the nimbers to show either
G = H or G ≠ H (depending on whether the nimbers are equal). If one
(or both) isn’t impartial, but is still equal to a nimber, then we can still use
those nimbers.

• If G = 0, then we can just check whetherH is also equal to zero.
• If they are in different outcome classes, we can show this to prove G ≠ H .

Unfortunately, if they are in the same outcome class (and that class isn’t )
this isn’t enough to show that they are equal.

When playing games, it is extremely helpful to consider negatives to set up
Tweedledum-Tweedledee situations. For example, there is a clear winning move
for L playing next on + .
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+

+
TT

This move isn’t even L’s best move7, but in this case it doesn’t matter because
it’s an obvious win.

Notice that we used the Tweedledum-Tweedledee-notation (TT) there, even
though it doesn’t follow the previous rule of G + G for impartial games. This
is the new (and improved) version of Tweedledum-Tweedledee that you can use,
anytime it is obvious that the position-in-question is equal to G − G for some
G.8 This usually means that it’s clear that you have a sum of a position and it’s
opposite. If it’s not obvious that the second component is the negation of the first,
but we’ve already determined that they are negatives, then that determination
is better than Tweedledum-Tweedledee (assuming it’s correct and the work is
shown).

We have cheated a little bit here, and explained how to determine equivalence
without giving a clear definition. Formally, G = H if:

∀ positions X ∶ o(G +X) = o(H +X)

In (other) words, G equals H if, when you add G and H each to any other
game, those sums are always in the same outcome class.

Even though this is the definition of equality, in practice we do what we’ve
been doing so far in this section. We use the method of finding the outcome class
of the difference to actually determine (and prove) equality between two games.

Let’s quickly restate all of the tricks we have now to determine the equality of
two games, say G andH . (We’ll need these tricks for the exercises.)

• If G = H , we can prove that by:
– Proving that they are both in  , or

7Can you find their best move?
8The previous G + G still works for impartial positions, as −G = G, so G − G = G + G.
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– Proving they are both equal to the same nimber, ∗k , or
– Proving they have the same notation, or
– Proving that G −H = 0.

• If G ≠ H , we can prove that by:
– Proving that they are in different outcome classes, or
– Proving that they are equal to different nimbers, or
– Proving that one is equal to a nimber and the other isn’t, or
– Proving that G −H ≠ 0.

We will learn more ways to do this in future sections. It’s also an important
reminder that there are things that may seem like working proofs that are not:

• We cannot prove thatG = H by proving that they are in the same outcome
class (unless that class is ).

• We cannot prove that G ≠ H by proving that they have different notation.
We will see that positions with different notation can still have the same
value. (We will see many tricks about how to simplify notation to often
solve this problem.)

If you’re not sure whether two positions,G andH are equal, it’s recommended
to check their outcome classes first. If they are the same, then check the difference
G −H .

Exercises for 2.4
⋆ 0) Find the COL position that is the (obvious) negation of
. (You don’t need to show work if you use the (super fast) trick given in the
chapter.) (Answer 2.4.0 in Appendix)
1) Find the COL position that is the (obvious) negation of
. (You don’t need to show work if you use the (super fast) trick given in the
chapter.)
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⋆ 2) Find the TOPPLING DOMINOES position that is the (obvious) negation of
. (You don’t need to show work if you use the (super fast) trick

given in the chapter.) (Answer 2.4.2 in Appendix)
3) Find the TOPPLING DOMINOES position that is the (obvious) negation of

. (You don’t need to show work if you use the (super fast) trick given
in the chapter.)

⋆ 4) Find theKONANE position that is the (obvious) negation of
. (Hint: KONANE positions can be negated just like the other rulesets we’ve seen.)
(Answer 2.4.4 in Appendix)

5) Find theKONANE position that is the (obvious) negation of

. (Hint: KONANE positions can be negated just like the other rulesets we’ve seen.)

⋆ 6) Find the KAYLES position that is the (obvious) negation of .
(Hint: what is the negation of a position from an impartial ruleset?) (Answer
2.4.6 in Appendix)

7) Find theNIM position that is the (obvious) negation of
. (Hint: what is the negation of a position from an impartial ruleset?)

⋆ 8) Simplify G = −
{

0, ∗2 |
|

0, ∗2
} by removing the minus sign and reducing

your answer as much as you know how. (Answer 2.4.8 in Appendix)

9) Simplify G = −
{

0, ∗, ∗2 ||
|

{ | } ,
{

0 |
|

0
}

}

by removing the minus sign
and simplifying your answer as much as you know how.
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⋆ 10) Is COL position equal to ? Prove your answer. (Yes, this is
from one of the team exercises.) (Answer 2.4.10 in Appendix)

⋆ 11) Is COL position equal to ? Prove your answer. (Answer
2.4.11 in Appendix)

⋆ 12) Is COL position equal to ? Prove your answer. (Answer 2.4.12 in
Appendix)

⋆ 13) Is COL position equal to ? Prove your answer. (Answer 2.4.13
in Appendix)

⋆ 14) From another of the team exercises, is equal to ? (Both
are COL.) Prove your answer. (Answer 2.4.14 in Appendix)

⋆ 15) Is COL position equal to ? Prove your answer. (Answer
2.4.15 in Appendix)

16) Is KONANE position equal to ? Prove your
answer.

17) Is KONANE position equal to ? Prove your
answer.

18) Is COL position equal to ? Prove your answer.

19) Is equal to COL position ? Prove your answer.

122



2.5. Inequalities

20) Is equal to ? Prove your answer.

21) Is COL position equal to ? Prove your answer.
(Gather your papers, the solution to this one is quite long.)

2.5. Inequalities

Checking whether two game positions are equivalent is not the only way to com-
pare them. Perhaps we can also use inequalities similar to those used with num-
bers. Since we have given two of our outcome classes the names “positive” and
“negative”, we might want this:

• G > H means “G is better for L thanH”
• G < H means “G is better for R thanH”
This does not mean that the outcome classes, o(G) and o(H), have to be dif-

ferent. For example, can be considered better for L than
, even though they are both in . In the first, L has four separate plays

they can make, while the second has only two for L. The first position is better
for L, so we want to be able to say that it’s “greater than” the second.

>

How can we formalize this notion? How can we check whether this relation-
ship holds for any two positions? Well, just as we saw in the last section, the way
to actually compare is to find the outcome class of the difference of the two games.
As you might (or might not) be expecting, there is an extra wrinkle here. Here
are the four possibilities we get from analyzing the outcome class of a difference
of game positions:

• If o(G −H) =  , then G = H .
• If o(G −H) = , then G > H .
• If o(G −H) = , then G < H .
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• If o(G −H) = , then G ∥ H .
This last case, G ∥ H means “G is confused with H” or “G is incomparable

toH”. For example, ∗ is confused with ∗2 . They are not greater than, nor less
than, nor equal to each other.

In the previous section, we saw examples of equivalent positions. Let’s see
some examples of the other three.

First, what is the relationship between and ? This is one of the
examples we started in the last section. Let’s finish the analysis by finding the
outcome class of the difference:

+


+


+

+


+








Since the difference is in , > . To reinforce that this matches our
definition, we can consider a separating game, X = , to add to both
sides. You can check that both:

+ ∈ 

and
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+ ∈ 
As another example, let’s determine the relationship between and

. Just as before, we look at the outcome class of the difference.9

+


+
+







This difference is in, so < .
In our last example, let’s find the relationship between and . Since

these are both impartial, we can analyze this without using a game tree! We know
that =∗3 and =∗, so their difference is equal to their sum, which is
∗3+ ∗=∗2.

Since the difference is in  , we know that ∥ .
As with numbers, we can combine or negate some symbols to get additional

(binary) relations (e.g. ≤). Here’s what we have with games:
9Recall that impartial game positions are their own negatives (section 2.4).
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• G ≤ H (“G is less than or equal toH”) means G < H or G = H . (geq is
analagous)

• G ∦ H (“G is not confused with H”) means either G > H , G < H , or
G = H .

• G <∥ H (“G is less than or confused with H”) means either G < H or
G ∥ H .

• G ∥> H (“G is greater than or confused withH”) means either G > H or
G ∥ H .

• G ∥≯ H (“G is not greater than or confused with H”) means neither G >
H nor G ∥ H . This is equivalent to G ≤ H .

• G ≮∥ H (“G is not less than or confused with H”) means neither G < H
nor G ∥ H . This is equivalent to G ≥ H .

Sometimes we can determine the relationship without using the difference. If
we know the two outcome classes, we might be able to deduce the difference, or
at least eliminate some possibilities. Here’s a table showing the different possible
relationships of G andH , based on their outcome classes:

H
   

G
 anything G > H G > H or G ∥ H G > H
 G < H G = H G ∥ H G > H
 G < H or G ∥ H G ∥ H anything G > H or G ∥ H
 G < H G < H G < H or G ∥ H anything

An important note about : so far we have seen the nimbers (∗, ∗2, ∗3,…) but
there exist many other values in  . In the table above, the  - cell signifies
that the difference can be in any outcome class. However, from the small subset of
 values we’ve seen (the nimbers) we can’t get a difference in or. Whenever
you subtract (or add) two nimbers, the value is always another nimber or zero.10
Let’s use these inequalities to prove something about options.

10Yes, you can use this fact in the exercises below.
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Theorem 2.5.1 (Option Constraints). IfH is a left-option of G, thenH <∥ G.

Proof. Proof-by-contradiction. Assume that H ≥ G. Thus, H − G ≥ 0, so
H − G ∈  ∪  . Since H is a left-option of G, −H is a right-option of −G.
Thus, H −H = 0 is a right-option of H − G. Thus, R has a winning move on
H − G, soH − G ∈  ∪ . →←.
Thus, it cannot be thatH ≥ G, meaningH <∥ G.

Corollary 2.5.2. IfH is a left-option of G and both are numbers, then G > H .

Proof. Direct proof. Since G andH are both numbers, G = H is also a number.
Since G ∥> H , G −H cannot be negative nor zero. Thus, G −H > 0.
Corollary 2.5.3. IfH is a right-option of G, thenH ∥> G.

We leave the proof for exercise 2.5.15 .
Now that we have a sense for comparing games (or not, as in the case of incom-

parable games), let’s take some space to address the mathematics behind these
kinds of relationships.

Math Diversion: Relations
Amathematical relation is a way of comparing two sets. Formally, a relation
R is a subset of the cartesian product of sets A and B, i.e.

R ⊆ A × B

so that, if a ∈ A, b ∈ B, and (a, b) ∈ R then we say that a is related to
b by the relation R, or even that aRb. When R is known from context, we
sometimes write this as a ∼ b.
Relations should remind you of functions. In fact, every function is a rela-

tion but not every relation is a function, since R can contain both (a, b1) and
(a, b1).A relation can have any of the following properties:

1. R is reflexive if xRx for every x.
2. R is symmetric if xRy whenever yRx/
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3. R is transitive if whenever xRy and yRz, we also have xRz.
Some relations that are not symmetric are antisymmetric. This means that

if xRy and x ≠ y, that it cannot ever be the case that yRx.
For example, the relation ‘>’ on the setℝ is transitive, but neither reflexive

nor symmetric. This is because, while x > y, y > z implies that x > z, we
do not have that x > x nor that x > y implies that y > x for all real x and y.
Which properties does the relation ‘≤’ have on the set ℤ?

A:.Itisreflexivesincex≤xforallx∈ℤ,andtransitivesincex≤
y,y≤z⇒x≤z.Butitisnotsymmetricsince1≤5butitisnottrue
that5≤1.Infact,≤isantisymmetric.

An equivalence relation is a relation that has all three of these properties.
A simple example of an equivalence relation on the set of all people is “has
the same first name as”. Note that everyone has the same first name as them-
self, if person x has the same first name as person y then person y has the
same first name as person x. You should convince yourself that this relation
is transitive.

An equivalence relation also provides a nice way to partition a set.

It’s relatively straightforward to show that “=” is an equivalence relation on
any set of numbers. What about game equality? Recall that games G andH are
called equal if o(G +X) = o(H +X) for any game X. Let’s prove directly that
game equality is an equivalence relation.
Claim 2.5.4. The relation “=” on games is an equivalence relation.

Proof. We must show that this relation is reflexive, symmetric, and transitive.
• For any game G and any game X, o(G +X) = o(G +X) since the games

are identical, so “=” is reflexive.
• Say that we have games G andH such that o(G +X) = o(H +X) for any

game X. Then it is clear that we also have o(H +X) = o(G +X) for any
game X, hence G = H ⇒ H = G and “=” is symmetric.
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• If G = H and H = J for games G,H , and J , then for any games X
and Y , o(G + X) = o(H + X) and o(H + Y ) = o(J + Y ). If we let Z
be any game, then o(G + Z) = o(H + Z) and o(H + Z) = o(J + Z),
so o(G + Z) = o(J + Z). Hence game equality is also transitive, and is
therefore an equivalence relation.

Now what do we make of relations like <,≤, ∥> etc.? We need to talk a bit
about orders.

Onℝ or any of its subsets, the relations <,≤, >,≥ are reflexive, transitive, and
antisymmetric. This makes them into partial orders. A set with a partial order is
called a partially ordered set or aposet. Another nice example of a partial order
is ⊆ on the set of sets.
Claim 2.5.5. The relation ⊆ on the set of sets is a partial order.

Proof. Let A,B, and C be any three sets. A ⊆ A since A = A, so ⊆ is reflexive.
It is antisymmetric since the only time we have both A ⊆ B and B ⊆ A is when
A = B. To show transitivity, let a ∈ A. If A ⊆ B then a ∈ B, and if B ⊂ C then
every element in B is also in C . Hence, a ∈ C for all a ∈ A. So ⊆ is a partial
order.

A total order is a partial order with the additional property that every pair of
elements is comparable. That is, if x, y are in the set then xRy or yRx. Note
that we do not have a total order on the set of all games since some games are
incomparable. We will investigae the relations<∥ and || once we have somemore
tools at our disposal.

Exercises for 2.5

⋆ 0)What is the inequality relationship between COL position and
? Prove your answer. (This is a follow-up of exercise 2.4.10.) (Answer 2.5.0 in
Appendix)
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⋆ 1) What is the inequality relationship between COL position and ?
Prove your answer. (This is a follow-up of exercise 2.4.13.) (Answer 2.5.1 in
Appendix)

⋆ 2)What is the inequality relationship betweenCOL positions and
? Prove your answer. (Answer 2.5.2 in Appendix)
3) What is the inequality relationship between COL positions and

? Prove your answer. (This is a follow-up of exercise 2.4.14.)
4) What is the inequality relationship between COL position and

? Prove your answer. (This is a follow-up of exercise 2.4.18.)

5) What is the inequality relationship between COL position and
? Prove your answer. (This is a follow-up of exercise 2.4.15.)

6) What is the inequality relationship between and ? Prove
your answer.)

⋆ 7) G ∈  ∪ . Rewrite this as an equivalent comparison of G and 0. (Answer
2.5.7 in Appendix)
8) G ∈  ∪  . Rewrite this as an equivalent comparison of G and 0.
9) G ∈  ∪ ∪. Rewrite this as an equivalent comparison of G and 0.

⋆ 10)G ≱ 0. Rewrite this as an equivalent comparison ofG and 0 using a different
symbol. (Answer 2.5.10 in Appendix)
11)G ∥≯ 0. Rewrite this as an equivalent comparison ofG and 0 using a different
symbol.

⋆ 12) G ≤ 0. Write the equivalent expression of G as an element of the union of
outcome classes. (Answer 2.5.12 in Appendix)
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13) G ≠ 0. Write the equivalent expression of G as an element of the union of
outcome classes.
14) G <∥ 0. Write the equivalent expression of G as an element of the union of
outcome classes.
15) Prove the Corollary in the section: IfH is a right-option ofG, thenH ∥> G.

⋆ 16) Is the relation “has the same decimal part as” on the set of all reals reflexive,
symmetric, and/or transitive? Demonstrate. (Answer 2.5.16 in Appendix)
17) Is the relation “is taller than” on the set of all people in your class reflexive,
symmetric, and/or transitive? Demonstrate.

⋆ 18) Is the relation “has the same remainder when divided by 3” on the set of all
naturals reflexive, symmetric, and/or transitive? Demonstrate. (Answer 2.5.18
in Appendix)
19) Is the relation “is smaller than the square of” on the set of all reals reflexive,
symmetric, and/or transitive? Demonstrate.
20) Is the relation “is within 100 miles of” on the set of all towns reflexive,
symmetric, and/or transitive? Demonstrate.

2.6. Dominated Options

Now that we know how to compare games, we can use this information to sim-
plify some positions. When a player is choosing from amongst the options of a
position, they might want to pick something different depending on what else the
position is added to (if anything). Sometimes it’s better to choose ∗ ; sometimes
it’s better to choose 0.

However, we can eliminate some options from consideration if they’re always
worse than the others.

For example, consider this COL position: :
=
{

|

|

|

,
}
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Let’s consider those options for R:
• has a move for L (to zero) and no moves for R, so it’s in .
• has no moves for either player, so it’s in  .
Rwill never prefer givingL amove over moving to 0, so they will never choose

that option. That means we can remove it from evaluation of the position. Thus:

=
{

|

|

|

,
}

=
{

|

|

|

}

How do we know when a player will never prefer one option, G, over another,
H? This happens exactly when the positions are neither equal nor confused with
each other. If there is a strict greater-or-less-than relationship, then we can re-
move one of them. Here are all four cases:

• G > H : If these are options forL, then we can removeH , asLwill always
prefer G. If these are options for R, then we can similarly remove G.

• G = H : the positions will have the same value, so we can remove either
one of them (but not both).

• G ∥ H : the positions are confused with each other. We can’t remove either
of them.

• G < H : If these are options for L, then we can remove G. Otherwise, we
can removeH .

Whenever we drop an option for a player, we refer to that as a dominated option.
In the example above, we would say that “is dominated by”
“for R”. Sometimes one option will dominate many others, which can greatly
simplify your analysis.

In practice, dominating options happen all the time. It’s easy to eliminate
moves that are clearly bad for you. For example, in
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2.6. Dominated Options

L can choose to remove 1, 2, or 3 blue dominoes as their move. It is obvious
to players, even those who haven’t learned any combinatorial game theory, that
it’s best to only knock over one of the dominoes, leaving two for later. In the
understanding we’ve built up, that’s because

> > 0

and thus dominates the other two options for L.

Exercises for 2.6

⋆ 0)G =
{

{

|

|

0
}

, 0 ||
|

0
}

. Determine whether any ofG’s options are dominated.
If they are, remove them and simplifyG as much as you know how. Show all your
work. (Answer 2.6.0 in Appendix)

1)G =
{

|

|

|

0,
{

∗|
|

0
}

}

. Determine whether any ofG’s options are dominated.
If they are, remove them and simplifyG as much as you know how. Show all your
work.

⋆ 2) G =
{

{

0 |
|

}

, 0 ||
|

{

0 |
|

}

, 0
}

. Determine whether any of G’s options are
dominated. If they are, remove them and simplify G as much as you know how.
Show all your work. (Answer 2.6.2 in Appendix)

3) G =
{

{

0 |
|

}

, 0 ||
|

{

|

|

0
}

, 0
}

. Determine whether any of G’s options are
dominated. If they are, remove them and simplify G as much as you know how.
Show all your work.

⋆ 4) G =
{

∗, 0 |
|

0, ∗
}. Determine whether any of G’s options are dominated. If

they are, remove them and simplify G as much as you know how. Show all your
work. (Answer 2.6.4 in Appendix)
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2. Partisan Games

5) G =
{

∗, 0 ||
|

{

0 |
|

∗
}

}

. Determine whether any of G’s options are domi-
nated. If they are, remove them and simplify G as much as you know how. Show
all your work.

6) G =
{

0, ∗2,
{

∗|
|

0
}

|

|

|

{

0 |
|

}

, 0, ∗3
}

. Determine whether any of G’s op-
tions are dominated. If they are, remove them and simplify G as much as you
know how. Show all your work.

7)G = . Which of the options are the dominating options for each player?
(You do not need to do this formally.) WriteG is as simplified set-notation as you
know. What is o(G)?
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3. Values

So far we only have shortcut values for zero and the nimbers. There are many
more values for combinatorial game positions, though. Having these values will
make it easier for us to make decisions while playing games.

3.1. Integers

In this section, wewill finally use the integers,ℤ = {… ,−3,−2,−1, 0, 1, 2, 3,…},
to label some game positions. We have already used 0 to label all positions in  ,
but the rest of ℤ remains untouched.

We have seen the position { 0 |
|

} a few times. and are both equal
to { 0 |

|

}. This represents one extra move (to zero) for L, so let’s use 1 for that.
1 =

{

0 |
|

}

We already know about negatives, so −1 should be

−1 = −
{

0 |
|

}

=
{

|

|

−0
}

=
{

|

|

0
}

This makes sense, as this is one move only for R. Both and have
this value.

We would like 2 and −2 to be similar: 2 should mean that L has two “free”
moves; −2 should be worth two moves for only R. That means that if L makes a
move on 2, the result should be 1. Thus:
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3. Values

2 =
{

1 |
|

}

=
{

{

0 |
|

}

|

|

|

}

In the same way, 56 should have a single move to 55: 56 = {

55 |
|

}. With
this in mind, we can define all of our positive integers. For any n ∈ ℤ>0 ∶

n =
{

n − 1 |
|

}

And, for the negatives:
−n =

{

|

|

−(n − 1)
}

Themost important part of these numbers is that they sum exactly as one would
expect. For example, we can quickly say that

+ = −2 + 1 = −1

Now that we have an understanding of integers, we no longer have to carefully
analyze positions that are clearly a set number of moves for a single player. For
example, we can take it for granted that = 3. We can’t do this
for positions such as , as there are some overlapping moves for the
players. (Indeed, that value isn’t even an integer.)

TOPPLING DOMINOES positions are similar. is still 2, even though
it has moves for L to both 1 and 0.1 However, if there are both Red and Blue
dominoes in the same row, then we can’t just assume the position is an integer.

We can also quickly figure out the value of positions such as
. Since the uncolored vertices are all independent of each other, we can break it
apart:

= + + = 1 + 0 + −1 = 0

Lots of things work out the way we want them to:
1In exercise 3.1.2, we ask the reader to prove this position equals 2.
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3.1. Integers

• All positive integers are in .
• All negative integers are in .
• ⋯ 3 > 2 > 1 > 0 > −1 > −2 > −3⋯

Unfortunately, when we add integers to nimbers, we can’t simplify between
the two. Thus, the terms of 3+ ∗ 2 cannot be combined, though 3+ ∗ 2 − 1 can
be simplified to 2+ ∗2.

Alternatively, even though it doesn’t simplify things, per se, we might want to
rewrite a sum as a single game. Now that we know about integers, we can do that
a little easier. For example, if we want to find the sum of

{

2 |
|

1
}

+ 3

we can use the definition of game sums to combine it into one position, then use
arithmetic to simplify some of the options:

{

2 |
|

1
}

+ 3 =
{

2 |
|

1
}

+
{

2 |
|

}

=
{

2 + 3,
{

2 |
|

1
}

+ 2 ||
|

1 + 3
}

=
{

5,
{

2 |
|

1
}

+ 2 ||
|

4
}

In later sections, we will develop more techniques to quickly make sense of
games that look like { x |

|

y
} where x and y are numbers.

It can be easy to recognize integers, but cumbersome to justify them formally.
Consider a positionwhere one player is completely out ofmoves for the remainder
of the game and the other player’s remaining moves can be counted. In that case,
we allow a shortcut for the analysis denoted with #:

#
= − 3

=# −3

There are some important notes about this shortcut:
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3. Values

• This is not standard notation across other Combinatorial Game texts.
• This must be carefully employed. Only use this shortcut if the position

definitely fits the requirements.
For example, the followingKONANE position is not a simple position for count-

ing, though upon first glance, it looks like it:
≠ 4

This is because if L makes only the first jump to

then R has an option.
However, even if we can’t do this on the root, we can do this on nodes further

down a game tree like in the following TOPPLING DOMINOES position, with all
simple countable integer options shown:

3#
∅
02#−1#1#

∅
0

If players have moves in separate non-interactive components of the game, you
can use this shortcut by listing out the sum of the integers of those components.
E.g.:

+ =# (−2 + 3) = 1

or
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3.1. Integers

+ = (−2 + 3)# = 1
Make sure to include both steps.

Computational Corner: Recognizing Values
Let’s start writing a function to calculate the value of a position. How can
we recognize the integers, or at least those we’ve seen so far?

• We can recognize zeroes.
• Wecan recognize (some) positive integers if the right options are empty.
• We can recognize (some) negative integers if the left options are empty.
We’re going to just give up if we ever don’t know what to do. Here’s the

code for handling when there is one right-hand option { | x }:
def evaluate_position(position):

”’Evaluates a game position, which is a list of two lists.
The first list has left’s options; the second has right’s.”’
left_options = position[0]
right_options = position[1]
if len(left_options) == 0 and len(right_options) == 1:

# Case:1 Right option, 0 for Left.
option = right_options[0]
value = evaluate_position(option)
if isinstance(value, int) and value > 0:

#Not a winning move
return 0

elif isinstance(value, int):
return value - 1

else:
raise Error(’I don’t know how to evaluate this!’)

elif len(left_options) == 1 and len(right_options) == 0:
pass #saved for exercise 3.1.19
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elif len(left_options) == 0 and len(right_options) == 0:
pass #saved for exercise 3.1.18

else:
raise Error(’I don’t know how to evaluate this!’)

When you complete exercise 3.1.18 , you can test this out:
>>> zero = [[], []]
>>> negative_one = [[], [zero]]
>>> evaluate_position(negative_one)
-1

Because of the recursive case in here, evaluating a negative integer, −n,
requires O(n) time. When you get exercise 3.1.19 finished, you’ll be able
to evaluate (some) positive integers as well. (There are other forms that can
also evaluate to integers, as we’ll soon see!)

Exercises for 3.1

⋆ 0) Find the integer value of + + . (Answer 3.1.0 in Appendix)

1) Find the integer value of + .

2) Prove that equals 2.

3) Find the value of .

⋆ 4) What is the value of this KONANE position? (Answer
3.1.4 in Appendix)

5)What is the value of this KONANE position?
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3.1. Integers

6)What is the value of this KONANE position?

⋆ 7) Find the integer value of + . (Answer 3.1.7 in Appendix)

8) Find the integer value of + .

⋆ 9) Simplify −1+ ∗3 + 4+ ∗ . (Answer 3.1.9 in Appendix)
10) Simplify 2+ ∗2 − 10− ∗12.

⋆ 11) Find the value of + + + . (Answer 3.1.11 in
Appendix)

12) Find the value of + + .

⋆ 13) Rewrite { 1 |
|

4
}

−3 as a single position and use basic arithmetic to simplify
its options. (Answer 3.1.13 in Appendix)

⋆ 14)Rewrite { 2 |
|

−2
}

−1 as a single position and use basic arithmetic to simplify
its options. Use this to determine the position’s outcome class. (Answer 3.1.14
in Appendix)
15) Rewrite {

−5 |
|

−4
}

+ 1 as a single position and use basic arithmetic to
simplify its options. Use this to determine the position’s outcome class.
16) Rewrite ∗ +4 as a single position and use basic arithmetic to simplify its
options. Use this to determine the position’s outcome class.
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17) Prove that KONANE position is equal to 1.

⋆ 18) Continue coding evaluate_position by implementing the bottom case:
when there are no right or left options. (Answer 3.1.18 in Appendix)
19) Continue coding evaluate_position by implementing the second case:
when there is one left option and no right options.

3.2. Simplest Numbers

If we have a game position where each player has a move to a number (e.g.
{

x |
|

y
}), so far we only know what to do if the option for both players is a

move to zero. In that case, the game is just ∗ .
Let’s generalize this a bit further: what if we have { X |

|

Y
} and X < 0 and

Y > 0? Well, then L has only a move to  and R has only a move to . Since
neither of these are winning moves, { X |

|

Y
}

∈  , and { X |

|

Y
}

= 0.
What about the position { 0 |

|

2
}? It is in , so the value isn’t 0.2 Let’s check

whether it equals a positive game we’re now familiar with: 1. Remember that to
do this, we will find the outcome class of the difference, { 0 |

|

2
}

− 1:

{

0 |
|

2
}

− 1 =
{

0 |
|

2
}

+
{

|

|

0
}

=
{

0 − 1 ||
|

2 − 1,
{

0 |
|

2
}

+ 0
}

=
{

−1 ||
|

1,
{

0 |
|

2
}

}

L’s only option is in , and both of R’s options are in , so this sum is 0;
{

0 |
|

2
}

= 1.
Even more amazing, we don’t really use the 2 at all. If we replace that with a

bigger positive number, say 56, it doesn’t change the result! Thus:
{

0 |
|

2
}

=
{

0 |
|

3
}

=⋯ =
{

0 |
|

56
}

=⋯ = 1

2We are glad to see that the value of a game isn’t one of its options!
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3.2. Simplest Numbers

What happens if we change the zero in { 0 |
|

56
} to a 1? What is the value of

{

1 |
|

56
}?

Based on the last answer, let’s check to see whether it’s equal to 2.
{

1 |
|

56
}

− 2 =
{

1 |
|

56
}

+
{

|

|

−1
}

=
{

1 − 2 ||
|

56 − 2,
{

1 |
|

56
}

− 1
}

=
{

−1 ||
|

54,
{

1 |
|

56
}

+
{

|

|

0
}

}

−
{

−1
|

|

|

|

54,
{

1 − 1 ||
|

56 − 1,
{

1 |
|

56
}

+ 0
}

}

=
{

−1
|

|

|

|

54,
{

0 ||
|

55,
{

1 |
|

56
}

}

}

That last ugly option for R
(

{

0 ||
|

55,
{

1 |
|

56
}

}

)

looks confusing, but all
we care about is that L has a winning move to 0, so it is not in or  . None of
the options in the sum for either player are wins, so the sum is in  , and the two
parts are equal. Thus, { 1 |

|

56
}

= 2. This leads us to the first part of a theorem
known as the “Simplest Number Theorem”:

If G =
{

x |
|

y
}, x and y are numbers, x < y, and there is an integer between

x and y, then G = z, where z is the integer with smallest absolute value such that
x < z < y.
Thus, we can simplify { −7 |

|

−2
} because:

• −7 and −2 are numbers,
• −7 < −2, and
• There are integers (−6, −5, −4, and −3) between them.

Of those, −3 has the lowest absolute value, so { −7 |
|

−2
}

= −3.
Important points:
• We don’t have to worry about the cases where both z and −z are between

the two numbers, because then 0 will also be between them, and 0 is the
integer with the smallest absolute value.
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• We cannot use this if x > y. E.g. on { 5 |
|

−3
}. (Note that this game is in

 , so it cannot have a number value.)

Computational Corner: Simplest Integer
Let’s write a function to calculate the simplest integer, which should work
like this:
>>> simplest_integer(5, 10)

6
>>> simplest_integer(-100, 0)
-1
>>> x = simplest_integer(-3, 1)
>>> print(x)
0
>>> x = simplest_integer(1, -3)
>>> print(x)
None

Although there are some sneaky tricks we can do to recognize simplest
numbers without them, conditionals are probably the most readable solution
here, even though they are a bit ugly. (We will assume we’ve already im-
ported the math package.)
def simplest_integer(x, y):

”’Returns the simplest integer between x and y.”’
if not x < y:

return None
elif x < 0 and 0 < y:

return 0
elif x >= 0:

simplest = math.floor(x+1)
if simplest < y:

return simplest
else:

return None
else:
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3.2. Simplest Numbers

simplest = math.ceiling(x-1)
if simplest > x:

return simplest
else:

return None
This function contains no recursive calls, no loops, and no complicated

function calls; it runs in O(1) time.
If there isn’t an integer between x and y, we are not lost! In this case, we are

going to look for halves, then fourths, then eighths, etc. Halves have the form
k
2
, fourths are k

4
, and eights are k

8
. Each time, the power of 2 in the denominator

goes up. That means we are looking for a fraction like this where that power of
2 is minimized. More formally:

{

x |
|

y
}

= k
2j

where x < k
2j
< y with the lowest possible j

Numbers of the form k
2j
(where k and j are integers, j ≥ 0, and k is odd) are

known as dyadic rationals.
For example, if G =

{

0 |
|

1
}, there are many dyadic rationals between 0

and 1, including 1
4
, 1
2
, and 3

4
(and infinitely more). However, 1

2
has the smallest

denominator power of 2: 21. Thus, { 0 |
|

1
}

= 1
2
.

Here is an example of a COL position with value 1
2
:

=
{

, |

|

|

}

=
{

0,−1 |
|

1
}

=
{

0 |
|

1
}

= 1
2

This notion of fractions isn’t very useful if our standard arithmetical addition
doesn’t work out. What happens if we add two halves together? Do we get 1?
Let’s check whether 1

2
+ 1

2
= 1 by testing that 1

2
+ 1

2
− 1 = 0:

+ + =
{

0 |
|

1
}

+
{

0 |
|

1
}

+ −1
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• L doesn’t have a winningmove in this because when they choose 0 in one of
the { 0 |

|

1
} instances,Rwill pick 1 in the other, making the sum 0+1−1 =

0.
• R can choose to play in one of the { 0 |

|

1
} pieces, in which case L will

play in the other and win by making the sum 0 again. If they play in the
−1, moving it to zero, that’s even worse for them! L can move one of the
{

0 |
|

1
}s to a 0. R will have to make one of them 1 so that the sum is 1.

Since neither player has a winning move, the sum is zero, meaning that the game
value 1

2
acts just like we want it to in sums!

We have to be a bit careful here! Division does not (really) work with combi-
natorial game values. For example, just because G + G = 1, it is not necessarily
true that G = 1

2
. We save the details for exercise 3.2.29 .

Let’s look at fractional values with even larger denominators. Between 0 and 1
3
,

there are many dyadic rationals, including
(

1
16
, 1
8
, 3
16
, and 1

4

)

. 1
4
is the “simplest”

with the lowest denominator, so
{

0 ||
|

1
3

}

= 1
4
.3

Just like the integer case, we don’t have to worry if there are two dyadic ra-
tionals with the smallest denominator. If that happens, then there is definitely
another dyadic rational with a lower denominator. For example, if 5

8
and 7

8
are

between the bounds, then so is 6
8
= 3

4
.

We can now combine these two cases for the full Simplest Number Theorem:
If G = {

x |
|

y
}, x and y are numbers, and x < y, then

• if there is an integer, z, such that x < z < y, thenG is equal to the one with
the lowest absolute value,

• otherwise, G = k
2j

where x < k
2j
< y, k is an odd integer, and j is the

smallest non-negative integer that fits the inequality.
We’ve now found games with values as small (absolute-value-wise) as any

number we can want. In other words, no matter what positive number we can
3Note: we haven’t yet seen a game with value 1

3 .
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3.2. Simplest Numbers

think of, we can always create a game between that number and zero. For any
positive number, x, { 0 |

|

x
} is also positive, and { 0 |

|

x
}

< x.
Consider the position { 2 |

|

}

+
{

0, ∗ |
|

0, ∗
}

= 3+ ∗2. If it’sL’s turn to make
a move, which should they choose? Their three options are: 2+ ∗ 2, 3 + 0 = 3,
and 3+ ∗. Remembering that all nimbers are confused with zero, we can see that
both 3 and 3+ ∗ are greater than 2+ ∗2, so those two are the better options for L.
(They are confused with each other, so neither is always better than the other.)

Let’s look at another position, this time { 0 |
|

1
}

+
{

0 |
|

0
}

= 1
2
+ ∗, again

considering that L is next to move. From L’s two options (∗ and 1
2
) we can

compare and see that ∗< 1
2
, so L should move to 1

2
.

What about R on that same position? They could move to either 1+ ∗ or 1
2
.

1+ ∗> 1
2
, so it’s in R’s interest for them to move to 1

2
.

In all of these examples, it’s better for the players to choose to move on the
nimber part instead of the number. As it turns out, if there’s a winning move
for a player on the sum of a number and a non-number, it’s always preferrable to
play on the non-number part. How do we know? Let’s state and prove this as a
theorem!
Theorem 3.2.1 (Number Avoidance). LetG+H ∈ ∪ whereG is an integer
or dyadic-rational number andH is not a number. Then there is a left-option of
H , J , such that G + J is a winning move for L on G +H .

In other words, if there is a winning move on that sum for L, there is a win-
ning move on the non-number part. L might as well move on the non-number.
Naturally, the same property holds true for R as well. We will prove this using
induction.
Proof. Notice that all our numbers can bewrittenwith one of four forms: { x |

|

y
},

{

|

|

y
}, { x | }, or { | }. The options (x and y) in all of those are also numbers.

If we think about the L repeatedly making moves without any interaction from
R, they will wind up in a position, { |

|

y
} or { | }= 0, where they no longer

have an option. In our proof, we will induct on the number of times L can do
that.4
4The depth of this game is similar in idea to the birthday of a game, which we discuss in section
6.1.
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Base Case: Let G be a number where L has no left-options. Since G +H ∈
 ∪ , L must have a winning move. Since there are no left-options on G, H
must have a left-option J , such that G + J ∈  ∪  . Thus, G + J is a winning
move for L. ✓

Inductive Assumption: Assume that for all integers and dyadic rationals G
where L can make nmoves in a row, but not n+1, and any non-numberH where
G +H ∈  ∪ ,H has a left-option, J such that G + J is a winning move for
L. To finish our proof, we need to show that this still works for G′ instead of G
where L can make n + 1 moves in a row on G.

LetG′ be an integer or dyadic rational whereL can make n+1moves in a row,
but not n + 2. LetH be a non-number such that G′ +H ∈  ∪ .

LetK be the left-option ofG′. There are two cases. EitherK+H is a winning
move for L or it is not.

Case 1: K +H is not a winning move for L.
Then, just as in the base case, since G′ +H ∈  ∪ , it must have a winning

move for L. Thus, there must be a left-option, J , ofH such thatG′+J ∈ ∪ .
✓

Case 2: K +H is a winning move for L.
Thus, K + H ∈  ∪  . Since K is a number and H is not, K ≠ −H , and

K +H ≠ 0. Thus, K +H ∈ . SinceK L can make nmoves in a row onK and
K +H ∈ , it fits our inductive hypothesis. Thus H has a left-option, J such
that K + J ∈  ∪  , or K + J ∥> 0. By Theorem 2.5.1, G′ ∥> K . Since G′ and
K are both numbers, G′ > K . Thus, G′ + J > 0, so G′ + J is a winning move
for L from G′ +H . ✓

Both cases hold, so the entire recursive case holds. ✓
The proof works for R just as it works for L.
This means that it’s always better for a player to move on a non-number com-

ponent of a sum rather than the number. Although so far we only know about a
few non-numbers, we will see more later.

Exercises for 3.2

⋆ 0)What is the single-number value of { 3 |
|

7
}? (Answer 3.2.0 in Appendix)
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1)What is the single-number value of { −28 |
|

−20
}?

⋆ 2)What is the single-number value of { 33 |
|

133
}? (Answer 3.2.2 in Appendix)

3)What is the single-number value of { −10 |
|

10
}?

⋆ 4) List three dyadic rationals between 1
8
and 7

8
. (Answer 3.2.4 in Appendix)

5) List three dyadic rationals between −31
2
and −3.

⋆ 6)What is the single-number value of { 10 |
|

11
}? (Answer 3.2.6 in Appendix)

7)What is the single-number value of { −20 |
|

−19
}?

⋆ 8) What is the single-number value of
{

−5 1
2
|

|

|

−5
}

? (Answer 3.2.8 in Ap-
pendix)

9)What is the single-number value of
{

−23
8
|

|

|

−2 5
16

}

?

⋆ 10) What is the single-number value of
{

− 1
2
|

|

|

1
8

}

? (Answer 3.2.10 in Ap-
pendix)

11)What is the single-number value of
{

21
2
|

|

|

4
}

?

⋆ 12) Find an x and y such that { x |
|

y
}

= 95
8
. (Answer 3.2.12 in Appendix)

13) Find an x and y such that { x |
|

y
}

= −11
4
.

⋆ 14) Find an x and y such that { x |
|

y
}

= −511
16
. (Answer 3.2.14 in Appendix)

15) Find an x and y such that { x |
|

y
}

= 111 3
32
.
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3. Values

⋆ 16) What is the single-number value of
{

{

2 |
|

6
}

|

|

|

{

6 |
|

10
}

}

? (Answer
3.2.16 in Appendix)

17)What is the simplified value of
{

{

−3 |
|

1
}

|

|

|

{

−1 |
|

3
}

}

?

⋆ 18)What is the simplified value of
{

{

0 |
|

1
}

|

|

|

{

1 |
|

2
}

}

? (Answer 3.2.18 in
Appendix)

19)What is the simplified value of
{

{

−2 |
|

}

|

|

|

{

1 |
|

}

}

?

⋆ 20) What is the simplified value of
{

{

−10 |
|

−1
}

|

|

|

{

0 |
|

4
}

}

? (Answer
3.2.20 in Appendix)

21)What is the simplified value of
{

{

−100 |
|

−99
}

|

|

|

{

−98 |
|

0
}

}

?

⋆ 22)What is the simplified value of
{

{

{

3 |
|

5
}

|

|

|

{

11 |
|

13
}

}

|

|

|

|

{

{

20 |
|

33
}

|

|

|

{

42 |
|

2176
}

}

}

?
(The eight numbers used here were supplied by one of the authors’ children.)

(Answer 3.2.22 in Appendix)
23) Use a direct proof to show that { 0, ∗ |

|

1
} is equal to 1

2
.

⋆ 24) Use a direct proof to show that { 0 |
|

1, 1+ ∗
} is equal to 1

2
. (Answer 3.2.24

in Appendix)
25) We know that { 0 |

|

1
}

= 1
2
, and from exercise 3.2.24 , we know that

{

0 |
|

1, 1+ ∗
}

= 1
2
too. This doesn’t work with {

0 |
|

1+ ∗
}, however. Use a

direct proof to show that it is instead equal to 1.

26) Determine which single-number value is equal to
{

11
2
|

|

|

}

and then use
a direct proof to show that it is indeed the value. Hint: There are two likely
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3.2. Simplest Numbers

candidates for the value, based on what you know about integers and simplest
numbers.

⋆ 27) Find the number value of the sum of COL positions + .
(Answer 3.2.27 in Appendix)
28) Find the number value of the COL position .
29) LetG = + . Show that combinatorial game division doesn’t work
by proving two things:

• G + G = 1, and
• G ≠ 1

2

⋆ 30)What is the value of ? You may need to use the result from exercise
3.2.23 . (Answer 3.2.30 in Appendix)

31) What is the value of ? You may need to use the result from
exercise 3.2.30 .

⋆ 32)What is the value of this KONANE position: ? (Answer

3.2.32 in Appendix)

33)What is the value of this KONANE position: ?

34) Prove that no integer or dyadic rational can be in .
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3. Values

3.3. Switches

Simplest numbers help us find that { 0 |
|

2
}

= 1, but it doesn’t help us if we swap
the two options: { 2 |

|

0
}. These positions, { x |

|

y
} where x and y are numbers

and x ≥ y, are a new type of value: switches.
For example, here’s a position you may encounter in TOPPLING DOMINOES:

. What are the different options here?

=
{

0, 1,−2,
|

|

|

|

|

−1, 0, 2,
}

The complicated positions are dominated on both sides (we save the proof of
this for exercise 3.3.37 ) so the remaining options are:

{

0, 1,−2 |
|

−1, 0, 2
}

=
{

1 |
|

−1
}

As we mentioned before, this looks like a simplest-number case, except that
1 > −1. Additionally, { 1 |

|

−1
}

∈ , so it can’t be equal to zero. Just like nim-
bers, switches are values that are not numbers, so we will need separate notation
for them.

As we said above, a switch is a position equal to { x |
|

y
}, where x ≥ y. We

can rewrite this as { b + ℎ |

|

b − ℎ
} where:5

• b = x+y
2

and
• ℎ = x−y

2

Since x ≥ y, ℎ ≥ 0. Now, our switch notation will be to write { b + ℎ |

|

b − ℎ
}

as b ± ℎ. We have names for these two pieces:
b

⏟⏟⏟
base

± ℎ
⏟⏟⏟

heat
Switches are extremely valuable for players to move on. They either provide

moves for that player to use later or they deny their opponent moves. The heat
5We save the actual proof (using arithmetic) of this equivalence for exercise 3.3.38 .
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3.3. Switches

of a switch tells the player how many moves they will gain by playing on it, i.e.
how many moves that play is “worth”. If the base of a switch is zero, we often
drop the zero in front. For example, { 3 |

|

−3
}

= 0 ± 3 = ±3.
Consider, for example, . If we (correctly) assume that the

best moves are tipping the middlemost dominoes towards the opponents’ domi-
noes, then we quickly see that

=
{

2 |
|

−2
}

= ±2

Now consider adding this to a COL ∗:

+

The reward for both players to move in the TOPPLING DOMINOES switch is
extra moves for them to use later, while the COL position doesn’t provide this.6
Our definition for a switch includes ∗= {

0 |
|

0
}

= ±0.7
Since switches earn players extra moves to be used later, we will often refer

to those extra moves as “points”. Thus, for example, we would say that whoever
plays on ±3 “earns 3 points”, independent of whether they are L or R.

What happens if we take the opposite (negative) of a switch with a base of
zero? E.g. ±3?

− ± 3 = −
{

3 |
|

−3
}

=
{

− − 3 |
|

−3
}

=
{

3 |
|

−3
}

= ±3

Thus, ±x is its own switch!8
When we add other values to zero-base switches, e.g. ∗2 + ±7, it sounds odd

to say “plus plus minus”, so we drop the operator and just write this as ∗ 2 ± 7.
6As it turns out, there are no switches inside COL aside from ∗, which we can consider as ±0.)
7This is not common across all definitions. Many texts will not include ±0 as a switch.
8An easy proof of the general case is left for exercise 3.3.39 .
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3. Values

This works with numbers as well, so −5 + ±3 = −5 ± 3. This value is exactly
the same as the value −5 ± 3 = {

−2 |
|

−8
}.9

Let’s look at something a little more complicated. If we have this sum of TOP-
PLING DOMINOES strands:

G = + +

Can we easily find the outcome class of G? How far can we simplify the value
of this game?

With a reasonable guess at the dominating options and the values we’ve seen
so far, we can quickly turn this into a sum of numbers and switches:

G = ±3 − 1 ± 1
= −1 ± 3 ± 1

The notation for a sum of switches like this is quite common, and it’s normal
to write them with the heats going from left to right in descending order. Thus,
if we have two switches b1 ± ℎ1 and b2 ± ℎ2, and ℎ1 > ℎ2, then it’s best to write
the sum as:

b1 ± ℎ1 + b2 ± ℎ2 = (b1 + b2) ± ℎ1 ± ℎ2
It is actually not difficult to find the outcome class of a sum of switches. The

best play (for both players) is always to move on the switch with the highest heat.
That means that if L goes first in our TOPPLING DOMINOES example above, they
will earn 3 points, thenRwill earn 1 point. After those two moves, the value will
be 3−1−1 = 1, a win for L. Using the same logic, R can earn −3+1−1 = −3.
Both can win by moving first, so the game is in .

Is simplifying the value just as easy? Can we combine the two switch terms
into one or cancel them out at all? Unfortunately, the answer is no. It might seem
that we can condense ±3 ± 1 into ±2, except that the first position requires two
moves to resolve the two switches and the second would need only one. −1±3±1
is as good as we’re going to get.
9We save a proof of this for exercise 3.3.40 .
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3.3. Switches

Okay, so perhaps there is a way to condense three such switches into a single
term. Consider instead ±7 ± 4 ± 1. If players correctly played these from most
beneficial to least, the first player would earn 7 for themselves, then the next
would cancel out 4 of those, then the last would gain one back. Maybe this sum
is equivalent to just ±4. Let’s try adding ±5 to both and see what happens.

• In ±4 ± 5 = ±5 ± 4, the first player claims 5 points and the other player
negates 4 by claiming the 4 for themselves. Whoever goes first gains a net
of 1 point.

• In ±7 ± 4 ± 1 ± 5 = ±7 + ±5 + ±4 + ±1, the first player will get 7, then
lose 5 to the next player’s move, then gain 4 again, then lose another 1. In
total, whoever goes first gains a net of 5 points.

By adding a switch inbetween the terms of our sum, we see that we cannot col-
lapse them as we might have wanted. The issue here is that we can have an
expectation of the order those switches might be played on in their own group,
but if we add another switch that falls somewhere inside that order, it will inter-
rupt that expected order and change which points go to the first as opposed to the
second player.

This occurs because no matter how close two different switches are, there can
always be a switch between them. For example, ±41

4
± 4 is heavily changed by

adding a switch inbetween, e.g. ±41
4
± 4 1

8
± 4.

Only in one obvious case can we simplify. Consider the position ±3 ± 3. The
result of this sum is each player getting 3 points, canceling each other out. It
doesn’t matter if this is added to other games, because the order of these two
doesn’t matter.

Thus, in general, ±x ± x = 0.
How do numbers comparewith switches? Let’s just consider zero-based switches.

Using ±4 as an example:
• Which numbers are less than ±4?
• Which numbers are greater than ±4?
• Which numbers are confused with ±4?
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Let’s start by comparing with 4, which means we need to find o(4 − ±4) =
o(4 ± 4).

4 ± 4 = 4 +
{

4 |
|

−4
}

=
{

8 |
|

0
}

∈

Thus 4 ∥ ±4. Notice that if our right option was anything larger, this would be
in  instead. For example:

4.01 ± 4 = 4.01 +
{

4 |
|

−4
}

=
{

8.01 |
|

.01
}

∈ 

4.01 > ±4. We can add any positive number to that 4 to get a value greater
than ±4.

On the other side of zero, the same thing happens. −4 ∥ ±4, but −4.001 < ±4.
When comparing to a number, x,

• ±4 < x when x < −4,
• ±4 ∥ x when −4 ≥ x ≥ 4, and
• ±4 > x when x > 4.
This extends for any zero-based switch. When comparing ±k to a number x:
• ±k < x when x < −k,
• ±k ∥ x when −k ≥ x ≥ k, and
• ±k > x when x > k.

Exercises for 3.3
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3.3. Switches

⋆ 0) Rewrite { 2 |
|

0
} in the form a ± x. (Answer 3.3.0 in Appendix)

1) Rewrite { 8 |
|

2
} in the form a ± x.

⋆ 2) Rewrite { −100 |
|

−300
} in the form a ± x. (Answer 3.3.2 in Appendix)

3) Following the example in the section, rewrite { 4 |
|

0
} in the form a±x. Use

a direct proof to show that this equivalence holds without using the formulas for
a and x presented earlier.

⋆ 4) Rewrite the sum {

0 |
|

7
}

+
{

7 |
|

0
} as a single position of the form {

x |
|

y
}.

(Answer 3.3.4 in Appendix)
5) Rewrite the sum {

−1 |
|

2
}

+
{

2 |
|

−1
} as a single position of the form

{

x |
|

y
}.

⋆ 6) Rewrite the sum {

2 |
|

5
}

+
{

5 |
|

2
} as a single position of the form {

x |
|

y
}.

(Answer 3.3.6 in Appendix)
7) Rewrite the sum {

100 |
|

50
}

+
{

50 |
|

100
} as a single position of the form

{

x |
|

y
}.

⋆ 8) Rewrite the sum {

−2 |
|

−100
}

+
{

−100 |
|

−2
} as a single position of the

form {

x |
|

y
}. (Answer 3.3.8 in Appendix)

9) Rewrite the sum {

−2 |
|

−3
}

+
{

1 |
|

4
} as a single position of the form

{

x |
|

y
}.

⋆ 10) Rewrite the sum G =
{

6 |
|

2
}

+
{

−2 |
|

−6
} as a sum of a number and

switches and then find o(G). (Answer 3.3.10 in Appendix)
11) Rewrite the sum G =

{

−8 |
|

−18
}

+
{

10 |
|

8
} as a sum of a number and

switches and then find o(G).

157



3. Values

⋆ 12) Rewrite the sum G =
{

−1 |
|

−2
}

+
{

4 |
|

3
} as a sum of a number and

switches and then find o(G). (Answer 3.3.12 in Appendix)
13) Rewrite G = ±10 ± 4 without the ± symbol. (Hint: your position will have
the form

{

{

a |
|

b
}

|

|

|

{

c |
|

d
}

}

.)

⋆ 14) Rewrite G = −2 ± 3 ± 1 without the ± symbol. (Hint: your position will
have the form

{

{

a |
|

b
}

|

|

|

{

c |
|

d
}

}

.) (Answer 3.3.14 in Appendix)

15) Rewrite G = −10 ± 9 ± 8 without the ± symbol.
⋆ 16) RewriteG = 21

2
±4±3without the± symbol. (Answer 3.3.16 in Appendix)

17) Assuming a is a number, and b, and c are non-negative numbers, and that
b ≥ c, rewrite G = a ± b ± c without the ± symbol.

⋆ 18)RewriteG =
{

{

12 |
|

6
}

|

|

|

{

4 |
|

−2
}

}

as a sum of two switches. (Answer
3.3.18 in Appendix)

19) Rewrite G =
{

{

−3 |
|

−7
}

|

|

|

{

−9 |
|

−13
}

}

as a sum of two switches.

⋆ 20) Rewrite G =
{

{

4 |
|

3
}

|

|

|

{

2 |
|

1
}

}

as a sum of two switches. (Answer
3.3.20 in Appendix)

21) Rewrite G =
{

{

2 |
|

2
}

|

|

|

{

−4 |
|

−4
}

}

as a sum of two switches.

⋆ 22) Simplify G =
{

{

2 |
|

4
}

|

|

|

{

−2 |
|

0
}

}

to a switch or sum of switches.
(Answer 3.3.22 in Appendix)

23) Simplify G =
{

{

1 |
|

100
}

|

|

|

{

3 |
|

−1
}

}

to a switch or sum of switches.
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3.3. Switches

⋆ 24) Simplify G =
{

{

14 |
|

50
}

|

|

|

{

4 |
|

100
}

}

to a switch or sum of switches.
(Answer 3.3.24 in Appendix)

25) Simplify G =
{

{

4 |
|

}

|

|

|

{

−10 |
|

−6
}

}

to a switch or sum of switches.

26) SimplifyG =
{

{

|

|

−22
}

|

|

|

{

−40 |
|

−26
}

}

to a switch or sum of switches.

⋆ 27) G =
{

{

7 |
|

5
}

|

|

|

{

−3 |
|

x
}

}

. Is it possible for G to be the sum of two
switches? If so, find x. If not, explain why not. (Answer 3.3.27 in Appendix)

28) G =
{

{

−11 |
|

x
}

|

|

|

{

−21 |
|

−31
}

}

. Is it possible for G to be the sum of
two switches? If so, find x. If not, explain why not.

⋆ 29) G =
{

{

1 |
|

0
}

|

|

|

{

x |
|

−2
}

}

. Is it possible for G to be the sum of two
switches? If so, find x. If not, explain why not. (Answer 3.3.29 in Appendix)

30) G =
{

{

6 |
|

−2
}

|

|

|

{

x |
|

−4
}

}

. Is it possible for G to be the sum of two
switches? If so, find x. If not, explain why not.

⋆ 31) SimplifyG =
{

{

11 |
|

15
}

|

|

|

{

7 |
|

15
}

}

+
{

{

|

|

−10
}

|

|

|

{

−20 |
|

−16
}

}

by expressing it as a sum of switches. (Answer 3.3.31 in Appendix)

32) Simplify G =
{

{

7 |
|

10
}

|

|

|

{

|

|

−1
}

}

+
{

{

|

|

0
}

|

|

|

{

−8 |
|

−4
}

}

by
expressing it as a sum of switches.

33) SimplifyG =
{

{

11 |
|

21
}

|

|

|

{

−21 |
|

−7
}

}

+
{

{

17 |
|

21
}

|

|

|

{

−21 |
|

−1
}

}

by expressing it as a sum of switches.
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⋆ 34)What is the value of this KONANE position: ? (Answer

3.3.34 in Appendix)

35)What is the value of this KONANE position: ?

36)What is the value of this KONANE position: ?

37) In the chapter, we skipped the step showing that 1 > . Prove this by
finding the value of .

38) Use some arithmetic in a direct proof to show the assertion in the section,
that if { x |

|

y
}

=
{

b + ℎ |

|

b − ℎ
}, then b = x+y

2
and ℎ = x−y

2
.

⋆ 39) Use a direct proof to show that − ± x = ±x for any non-negative number x.
(Answer 3.3.39 in Appendix)
40) Use a direct proof to show that n + 0 ± ℎ = n ± ℎ for any number n. Hint:
This proof is extremely short if you use Number Avoidance!

⋆ 41) ConsiderG =
{

{ w | x } ||
|

{

y |
|

z
}

}

wherew, x, y, and z are all numbers.
Using your answer from exercise 3.3.17 , fill in the boxes below with comparison
operators to give four necessary and sufficient conditions for G to be the sum of
two switches:
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3.4. Other rational game values

• w□ x□ y□ z and
• w − x□ y − z

(Answer 3.3.41 in Appendix)
42) Use your answer to exercise 3.3.17 to write a direct proof that your answers
to exercise 3.3.41 are correct. (In other words, show that these conditions are
necessary for G to be the sum of two switches.)

3.4. Other rational game values

As we saw in Section 3.2, the only rational values that a short game can achieve
are dyadic rationals, i.e. p

2n
for some integers p and n. As a short refresher, note

that the TOPPLING DOMINOES position equals { 0 |
|

1
}

= 1
2
since L

can move to 0 and R can move to 1. Next, consider the position .
Here, L’s best move is still to 0, and now R’s best move is to . Hence,
this position has value

{

0 ||
|

1
2

}

= 1
4
.

Continuing in this way, it seems that …
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

2n

(n copies of alternat-

ing pairs and ending with a blue domino) has value 1
2n
. Let’s prove this using

mathematical induction.
Claim 3.4.1. …

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
2n

has value 1
2n
for all n ≥ 0.

Proof. We proceed by induction on n.
Base Case: P (0). We’ve chosen the smallest possible value for our base case.

This is simply the position which has value 1 = 1
20
. So the base case is true.

✓

Inductive Assumption: Assume P (n) is true. Consider the position
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3. Values

…
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

2(n+1)

.

This is the same as
…

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
2n

.

We can see that L’s best move is to clear the board and move to 0, while R can,
at best, move to the position

…
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

2n

.

By our inductive assumption, we know that this position has value 1
2n
. In fact, we

know this is the best move for R because, by our inductive assumption, all other
options are greater. Therefore,

…
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

2(n+1)

has value
{

0 ||
|

1
2n

}

= 1
2n+1

. Hence the claim is true.
We have found a TOPPLING DOMINOES position for every positive integer

power of 1
2
! Let’s use this construction to find our first game with a rational value

that isn’t dyadic. We know that we can add values of TOPPLING DOMINOES
positions by simply lining them up with a space between them. For example,

has value 1 + 1
2
= 3

2
and

has value 1 + 1
2
+ 1

4
= 7

4
. You’ll recall from Calculus that∑∞

k=0 ar
k converges

to a
1−r

whenever |r| < 1. So what if we consider an infinitely long strip composed
of smaller and smaller valued positions?
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3.5. Infinitesimals

…
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

8

…
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

12

has value 1 + 1
4
+ 1

16
+ 1

64
+ … =

∑∞
k=0

1
4k
= 1

1− 1
4

= 4
3
, which is not dyadic.

Therefore, it may seem that if we consider games with infinite size we are no
longer restricted to dyadic rational game values. However, we need to be careful.
If our game really has value 1

3
> 0, then L has a winning move. However, this

game will not end in a finite number of moves, so it can’t be in . Infinite games
unfortunately require a lot of machinery we aren’t ready to handle yet, and are
outside the scope of this book.

3.5. Infinitesimals

So far we have seen games with rational values that are greater than, less than,
or equal to zero. We have also seen fuzzy games that are incomparable to zero.
But we can also find games that are greater than zero but smaller than anything
we’ve seen so far.

Consider the following TOPPLING DOMINOES position:

A game tree will demonstrate that L’s best option is 0 and R’s best option is
∗. For now, let u = {

0 |
|

∗
} represent this game value. Let’s prove directly that

u < r for any positive rational number r.
Proof. Let r ∈ ℚ+. There is some n ∈ ℕ such that 1∕2n < r. Let’s examine the
game

G = 1∕2n − u
= 1∕2n +

{

∗ |
|

0
}

By Theorem 3.2.1 (Number Avoidance Theorem), if L has a winning move
then it is to 1∕2n+ ∗. Then, similarly, R can at best play to 1∕2n ∈ . If instead
R moves first, it is to 1∕2n ∈ . Therefore, G ∈  and the game u < r for any
positive rational number r.
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3. Values

We have found a positive game value that is smaller than every rational num-
ber! We call this value an infinitesimal, and denote u by the symbol ↑. Similarly,
we denote −u by ↓, which is an infinitesimal in. We will use the term infinites-
imal to refer to any non-zero value between all negative rationals and all positive
rationals. So any nimber is also an infinitesimal.
Claim 3.5.1. If n ∈ ℕ+ then ∗n is an infinitesimal.

Proof. Let r ∈ ℚ+. It is sufficient to show that −r <∗ n < r. First, note that in
the game r− ∗n, which is equivalent to r+ ∗n, L can move to r, and R can only
move to s− ∗ n(= s+ ∗ n) or r− ∗ k(= r+ ∗ k) for some s > r, k < n. Since
s > r, s+ ∗n > r+ ∗n. In the latter case, L can move to r > 0. So ∗n < r. We
leave the remainder of the proof to the reader.

Comparisons can get weird with infinitesimals. For example, ↑> 0, but both ↑
and 0 compare oddly with the sum ↑ + ∗.

↑ + ∗=
{

0 |
|

∗
}

+
{

0 |
|

0
}. L wins by making their move on ∗; R wins by

making their move on ↑. Thus, ↑ + ∗∈ , so ↑ + ∗∥ 0.
Now let’s compare ↑ and ↑ + ∗ by finding the outcome class of ↑ −(↑ + ∗):

↑ −(↑ + ∗) =↑ − ↑ − ∗
=↑ + ↓ + ∗
= 0+ ∗
=∗∈

Thus, ↑ ∥ ↑ + ∗ . We have found three games, G,H, and I where G ∥ H ∥ I ,
but G ∦ I! In fact, ↑ + ∗, also written ↑∗, demonstrates some weird properties
of nimbers. Let’s compare it to a few of them. Remember that every nimber is
its own inverse, so subtracting a nimber is equivalent to adding it.

0: We have just seen that ↑∗∥ 0.
*: ↑∗ − ∗=↑> 0
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3.5. Infinitesimals

∗2 : ↑∗ − ∗2 =↑ + ∗ + ∗2 =↑ + ∗3
If L goes first, they can move to ↑> 0.
If R goes first, they can move to either ∗ + ∗3 =∗2, ↑, ↑∗, or ↑ + ∗2, all
of which are positive or confused with 0. Hence R loses moving first, and
↑∗ − ∗2 > 0⇒↑∗>∗2.

∗k : A similar argument to above shows that ↑∗>∗k whenever k > 2.

We’ve just seen that there is a game, ↑∗, that is bigger than ∗ but confused with
0 and every other nimber. You’ll see in the exercises that there is a game g bigger
than ∗k and confused with every other nimber. Hence, there is no natural order
to the nimbers whatsoever.

Before proceeding, let’s introduce a new concept and a result that will help us.
Consider playing a game G in isolation. That is, two players on a single game,

alternating turns. If L moves first and both players play optimally, then the first
number that results is called the left stop of the game, denoted L(G). The right
stop, R(G) is the first number reached if insteadRmoves first. We can define the
stops of a game using the following recurrence relation.

L(G) =

⎧

⎪

⎨

⎪

⎩

G G is a number
max
∀GL

R(GL) otherwise R(G) =

⎧

⎪

⎨

⎪

⎩

G G is a number
min
∀GR

L(GR) otherwise

For any game G we can see that L(G) ≥ R(G). What about stops in infinites-
imals? We present the following theorem without proof, as its proof is outside
the scope of this course.
Theorem 3.5.2. G is infinitesimal if and only if L(G) = R(G) = 0.

We will see a larger infinitesimal in Section 6.1. For now, let’s see what other
infinitesimal values we can find. Since ↑= {

0 |
|

∗
}, what about the game g =

{

0 |
|

↑
}?
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3. Values

We can see that g > 0. How does it compare to ↑?

g− ↑ = g+ ↓

=
{

0 |
|

↑
}

+
{

∗ |
|

0
}

=
{

0 ||
|

{

0 |
|

∗
}

}

+
{

∗ |
|

0
}

From here, L can move to ↓< 0 or to g+ ∗, and R can move to g or to ↑ + ↓= 0.
Since R has 0 as an option, we know that g− ↑∉ . Hence, g ≯↑. It can be
similarly shown that ↑ −g ∉ , hence g ≮↑. So the game g is incomparable to
↑. In fact, g =↑ + ↑ + ∗, which we denote ⇑∗.

We can find much smaller values than ↑ and ⇑∗. Consider the game r =
{

0 |
|

−1
} and another game ⧾1 in which L can move to 0 but R can only move

to r (so⧾1 =
{

0 ||
|

{

0 |
|

−1
}

}

). We can see that r ∈ , though it also, in some
sense, is a bit better forR than for L. However, the game⧾1 ∈  since no matter
which player moves first, L has a winning strategy. The game ⧾1 is read tiny 1.
In fact, we can replace 1 in rwith any gameG to yield⧾G =

{

0 ||
|

{

0 |
|

−G
}

}

.
Naturally, the game−⧾G =

{

{

G |

|

0
}

|

|

|

0
}

is calledminyG and is written⧿G.
Let’s examine some tiny and miny positions.

First, we prove that if G > 0, then ⧾G is infinitesimal and positive.

Proof. Let G > 0 be a game. In ⧾G , L can move to 0, while Rmoving first can
move to a position in . So ⧾G ∈ .

Now, to show that it’s infinitesimal, we apply Theoremm 3.5.2 and consider
the stops of G. When Lmoves first, the game ends at 0 in one move. If Rmoves
first, then the game moves to { 0 |

|

−G
}, after which L moves to 0. Since both

stops are 0, the game ⧾G is infinitesimal.

Let’s examine an ruleset that has some interesting properties related to in-
finitesimals.
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3.5. Infinitesimals

CLOBBER
CLOBBER is a partisan game in which players take turns moving a piece
of their color in any of the four orthogonal directions onto a piece of their
opponent’s color, removing the other’s piece from play.

→ →

L moves right to take the red piece, then R moves up to win.

Note that, in CLOBBER, if one player has a move then so does the other. In
the game tree of any position in CLOBBER, therefore, every node has a sibling.
This is an example of a dicotic game. What values do you think are possible in
a dicotic game? Note that a positive (or negative) integer is not dicotic, which is
evident from its game tree. Since any option of a dicotic game is also dicotic, we
have that no integer can be an option of a dicotic game. Since integers appear as
values in the game tree of any rational number, we exclude all rational values. In
fact, every dicotic game attains only infinitesimal values. Such a game is called
all-small.

Exercises for 3.5

0)What is the value of this KONANE position: ?

1) Complete the proof that if n ∈ ℕ+ then ∗n is an infinitesimal.
⋆ 2) Since ↑> 0 we know that G+ ↑> G for any game G. So, in particular,
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3. Values

↑ + ↑>↑. Prove that ↑ + ↑, denoted ⇑ is an infinitesimal. (Answer 3.5.2 in
Appendix)
3) Perhaps surprisingly, the sum ↑ + ↑ + ∗ is equivalent to { 0 |

|

↑
}. Prove that

this is the case. (↑ + ↑ is usually written as ⇑)
⋆ 4) Show that the game ⧾1+ ∗k is bigger than ∗k. (Answer 3.5.4 in Appendix)

5) Show that the game ⧾1+ ∗k is confused with ∗j whenever j ≠ k.

⋆ 6)What is the value of the CLOBBER position ? (Answer 3.5.6 in
Appendix)

7)What is the value of the CLOBBER position ?

8)What is the value of the CLOBBER position ?
9) Determine whether or not || is an equivalence relation. Hint: We’re in the
section on infinitesimals!
10) Determine whether or not <∥ is a partial order.
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4. Strategy

Let’s revisit the questions we started off with. Remember that we’re considering
these when it is our turn in a combinatorial game.

1. Is it possible for us to win this game?
2. Can we win no matter what our opponent does?
3. Which of our possible moves is part of a winning strategy?
Let’s discuss each of these and see apply everything we’ve learned to try to

answer them.

4.1. They-Love-Me-They-Love-Me-Not

The first question, “Is it possible for us to win this game?” avoids the assumption
of optimal moves by the two players. Instead, we are asking whether there is
any back-and-forth path through the game tree that results in a winning outcome.
This seems likely, but there is a whole family of positions where the winner is
independent of which moves are made; neither player can change the outcome by
making good (or bad) moves. For example, consider a NIM position withmultiple
piles of only one stick.

The value of these kinds of positions is always only 0 or ∗; there are no strategic
decisions to be made.

These situations are known as They-Love-Me-They-Love-Me-Not (short: TLMTLMN).
This name is a reference to the originally-French pasttime, “He (She) Loves Me,
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4. Strategy

He (She) Loves Me Not”. In this activity, the person alternatively speaks the two
phrases “He (She) Loves Me” and “He (She) Loves Me Not”, each time simul-
taneously plucking one petal off a flower1. Whichever phrase is uttered as the
last petal is removed is supposed to represent how the object of affection of the
“player” feels. Cartoons often depict the player as exhibiting back-and-forth as-
sumptions of how the game will end with each petal, even though the parity of
the number of petals remaining becomes more and more obvious2.

Instead of alternating phrases about states of amour, the phrases more appro-
priate for combinatorial game positions are: “I Win, They Win”. We imagine
that on each of their turns, the player says to themselves, “I win” and says “They
win” during their opponent’s turn. If there is nothing strategic the players can do
other than take their turns, then the outcome is only dependent on the parity of
the number of turns remaining.

They-Love-Me-They-Love-Me-Not situations are not restricted to impartial
rulesets. This COL position and KONANE position are both They-Love-Me-They-
Love-Me-Not:

Nor do the positions need to be alternating between ∗ and 0. These COL and
KONANE positions will alternate between either 1 and 0, or −1 and 0, depending
on who goes first:

1The flower is commonly depicted as an ox-eye daisy.
2Here is an example from Disney’s The Little Mermaid: https://youtu.be/Hqv1m4Gsfmw.
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4.1. They-Love-Me-They-Love-Me-Not

In the most general form, a They-Love-Me-They-Love-Me-Not position is one
where all possible game paths have the same parity of length. Some rulesets
contain only TLMTLMN positions. A common example of this is BRUSSELS
SPROUTS:
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4. Strategy

BRUSSELS SPROUTS
BRUSSELS SPROUTS is an impartial game played on a planar graph. Each
vertex has four “arms” where edges can be attached. Each arm can only
connect to one edge. A turn consists of creating a new vertex (with the
four arms) then adding edges from two opposite arms of that new vertex
to connect to previously-created arms. These new edges must maintain
the planarity of the graph, which means that when drawn on paper, they
may not cross any edges nor vertices. The chosen arms must not yet have
attached edges. If there is no way to draw a new vertex with such arms,
then there are no legal moves.
For simplicity of actual play, instead of drawing circles for the nodes, it
is common to draw a “plus sign” to indicate the four arms, or just draw a
short line segment across a line to signify the new node on that edge.

→ →

The first player adds the node at the top and draws the two edges. The
second player, then connects that same node with the one on the right.

The new node that’s drawn can’t connect on the left-hand-side.

Consider this BRUSSELS SPROUTS position, one move after starting from a
single-node empty board:

The value of this game is 0, as there are exactly two moves from this position.
(You can connect the outer arms and the inner arms, and then no more connec-
tions can be made.) In fact, from the initial position with just a single node (+)
there are only two different (non-symmetric) options. Either connecting two op-
posite arms, or two adjacent arms, like this:
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4.1. They-Love-Me-They-Love-Me-Not

It might seem that there is some strategic choice to be made between these two,
but this second option is also a zero.

Not only is there not a strategic choice to make here, in BRUSSELS SPROUTS,
there are never strategic choices! All options of each position have the same
value! Thus, each position is either ∗ or 0. This is because from a starting position
with k nodes, there will always be exactly 5k − 2 moves to reach the end of the
game.

This is not an obvious fact; proving it requires something called theEuler Char-
acteristic of planar graphs. The Euler Characteristic is a property of a connected
graph, specifically |

|

V |
|

− |

|

E|
|

+ f , where:
• V is the set of vertices, so |

|

V |
|

is the number of vertices (the size of that
set),

• E is the set of edges, so |
|

E|
|

is the number of edges, and
• f is the number of faces. In planar graphs, this is the number of distinct

regions, separated by edges. (The space outside the graph is one region.)
It is known that the Euler Characteristic of a (connected) planar graph is always

2. We can also express |
|

V |
|

, |
|

E|
|

, and f in terms of the number of moves to
finish the game and number of initial nodes. (We save this proof for exercises
4.1.7 and 4.1.8 .)

It is common for games of some rulesets to breakdown into a bunch of disjoint
one-move pieces, so it is helpful to recognize when this is you are approaching
one of these situations.

Exercises for 4.1
⋆ 0) Is the following impartial game tree a They-Love-Me-They-Love-Me-Not
(TLMTLMN) position? Find the outcome class and the value of the tree.
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4. Strategy

(Answer 4.1.0 in Appendix)
1) Is the following impartial game tree a They-Love-Me-They-Love-Me-Not
(TLMTLMN) position? Find the outcome class and the value of the root of the
tree.

2) Is the following impartial game tree a They-Love-Me-They-Love-Me-Not
(TLMTLMN) position? Find the outcome class and the value of the root of the
tree.
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4.2. Determining Winnability

3) Let G be a position where all followers have value either ∗ or 0. Prove that G
is TLMTLMN by proving that all leaves must have the same parity of distance
from G.

⋆ 4) What is the value of a BRUSSELS SPROUTS starting position with one node?
(Answer 4.1.4 in Appendix)
5)What is the value of a BRUSSELS SPROUTS starting position with four nodes?
6)What is the value of this BRUSSELS SPROUTS position?

7) What are the values of |
|

V |
|

, |
|

E|
|

, and f at the end of a BRUSSELS SPROUTS
game in terms of k, the number of initial nodes, and m, the number of moves
played? Explain each of your answers. Hint: f is the trickiest!
8) Use your answers to Exercise 4.1.7 to prove that the number of moves from
the starting position will always be 5k − 2.

4.2. Determining Winnability

The second question, “Can we win no matter what our opponent does?”, is really
just asking what the outcome class is. If we know the outcome class and we know
who plays next, we know which player has a winning strategy, so we can answer
the question.

Everything we’ve learned so far can help us to find the outcome class. As we
mentioned back in section 0.7, it’s often easier to find the values of individual
game components and add them together than it is to find the overall outcome
class based on the game tree of the sum of those components.

So, to determine winnability, we can consider this algorithm:
1. Separate the position into separate, disjoint components.
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2. Find the values of each of those components.
3. Add those values together to get the overall value.
4. Determine which outcome class that value is in.
5. Use the outcome class to decide whether you have a strategy to win!
Steps 2 and 4 are often the most difficult. For the second step, you’ll have

to enumerate the options for each player, then recursively find those values of
those positions. They may decompose into independent parts on their own. That
will make evaluation easier, so you would definitely try that before finding their
individual values. Consider this COL example:

This breaks down into four independent positions:

+ + +

The values of the parts are 0, 1, −1, and 1, respectively, so the total value is 1.
1 ∈ , so L has a winning strategy on the overall position no matter who goes
first.

The value of the game could be more complex. Let’s consider a KONANE
position:
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4.2. Determining Winnability

This also decomposes into four independent component positions:

+ + +

These components have values −1, −1, ∗, and ↑, so the total value is −2+ ↑
+ ∗. Since ↑ and ∗ are infinitesimals, any (finite) sum of them will be lower than
the absolute value of any number. Thus, |

|

−2|
|

>↑ + ∗, meaning that−2+ ↑ + ∗<
0, so the sum is in.
If our sum, G, consists of sums of numbers, arrows, and nimbers, we can keep

those three parts separate. The numbers sum to a single number and the nimbers
sum to a single nimber. Thus, the total will look like:

G = x
⏟⏟⏟
number

+a ↑ + ∗k

To determine the outcome class of this sum, we can follow this procedure:
1. If x ≠ 0, then the arrows and nimbers don’t matter. The outcome class is

wherever the number resides.
2. If x = 0 and a = 0 and k = 0, then G ∈  .
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4. Strategy

3. If x = 0 and a = 0, but k ≠ 0, then G ∈ .
4. If x = 0, but a ≠ 0, we can’t just use a to determine the outcome class. The

reason for this is that some arrows are incomparable with some nimbers.
E.g. ↑∥∗.

Luckily, the overlap in confusion between arrows and nimbers is not gigantic.
↑∥∗, but the same is not true of other sums of arrows and nimbers and ∗. For
example, ↑ + ∗ + ∗=↑∈ , so ↑ + ∗>∗; these two are not confused with each
other. Let’s check ⇑ and ∗:

⇑ + ∗ =
{

0 |
|

∗
}

+
{

0 |
|

0
}

=
{

↑ + ∗,⇑ |

|

↑ + ∗ + ∗,⇑
}

=
{

↑ + ∗,⇑ |

|

↑,⇑
}

=
{

↑ + ∗,⇑ |

|

↑
}

∈ 

Thus, ⇑>∗.
Let’s check how ↑ compares to ∗2:

↑ + ∗2 =
{

0 |
|

∗
}

+
{

0, ∗ |
|

0, ∗
}

=
{

∗ 2, ↑, ↑ + ∗ |
|

∗ 3, ↑, ↑ + ∗
}

∈ 

L has winning moves and R does not in the sum (difference), so ↑>∗2. As it
turns out, the only confusion between arrows and nimbers is ↑∥∗. 3

Thus, looking back at G = x + a ↑ + ∗ k, if x = 0 and a ≠ 0, we can use a to
determine the outcome class except when G =↑ + ∗ or G =↓ + ∗. In those two
cases, G ∈  . In all other cases, G ∈ o(a). Let’s update our categories from
above:
3You guessed it; we’re saving the proof of this for an exercise! Namely, exercise 4.2.2 .
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1. If x ≠ 0, then the arrows and nimbers don’t matter. The outcome class is
wherever the number resides.

2. If x = 0 and a = 0 and k = 0, then G ∈  .
3. If x = 0 and a = 0, but k ≠ 0, then G ∈ .
4. If x = 0, k = 1, and |a| = 1, then G ∈ .
5. If x = 0, and either k ≠ 1 or |a| > 1, thenG ∈ o(a) (meaning that if a > 0,

then G ∈  and if a < 0, then G ∈ ).
Now what happens if we include switches in G? How does this change how

we evaluate the outcome class? Before we consider the whole thing, let’s look at
the outcome class of a sum of switches:

G = x
⏟⏟⏟
number

±s1 ± s2 ±⋯ ± sn

Recall that for a single switch G = x ± s = { x + s | x − s }:
• G ∈ , if |x| ≤ s

• G ∈ , if x > s
• G ∈ , if x < −s
With two switches, G = x ± s1 ± s2, we can see what will happen after two

turns. The first player will take s1 and the second will take s2. If L goes first, the
value will become x + s1 − s2 when it is L’s turn again. If R goes first, it will
instead be x − s1 + s2 = x − (s1 − s2) at the start of their next turn.Let’s look more closely at the two cases based on who goes first.

• If L goes first, they will win if and only if x+ s1− s2 > 0, or −x < s1− s2.In other words, R wins if and only if −x ≥ s1 − s2.
• If R goes first, they will win if and only if x− (s1− s2) < 0, or x < s1− s2.In other words, L wins if and only if x ≥ s1 − s2.
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By intersecting the cases, we can find the conditions for the outcome classes.
• Independent of who goes first, L wins exactly when both −x < s1− s2 and
x ≥ s1 − s2. s1 − s2 ≥ 0, so in order for that second condition to hold, x
must also be non-negative. If x = 0, however, then 0 < s1 − s2 ≤ 0, whichalso cannot happen. Thus, we can better describe this case as o(G) =  iff
x > 0 and s1 − s2 ≤ x.

• Independent of who goes first, R wins exactly when both −x ≥ s1 − s2and x < s1 − s2. For similar rationale as above, o(G) =  iff x < 0 and
s1 − s2 ≤ −x.

• The first player wins exactly when −x < s1 − s2 and x < s1 − s2. Thus,
G ∈ iff −(s1 − s2) < x < s1 − s2.

• The previous player wins exactly when −x ≥ s1−s2 and x ≥ s1−s2. Thus,
G ∈  iff s1 − s2 ≤ x ≤ −(s1 − s2). This last case can only happen when
x = 0 and s1 = s2. (We save a proof of this for exercise 4.2.16 .)

Let’s summarize this in one equation (with cases):

x ± s1 ± s2 ∈

⎧

⎪

⎪

⎨

⎪

⎪

⎩

 , if |x| < s1 − s2
, if x > 0 and s1 − s2 ≤ x
, if x < 0 and s1 − s2 ≤ −x
 , if x = 0 and s1 = s2

This is very similar to our one-switch case, using s1− s2 in place of s and withsome differences along the boundaries. E.g. using < instead of ≤.
What about three switches? What are the outcome class possibilities for G =

x±s1±s2±s3? IfL goes first, the value after three moves will be: x+s1−s2+s3.If R goes first, the value after three moves will be: x − s1 + s2 − s3. Since thefirst player also takes the last switch, this looks a lot like our one-switch case:

x ± s1 ± s2 ± s3 ∈

⎧

⎪

⎨

⎪

⎩

 , if |x| ≤ s1 − s2 + s3
, if s1 − s2 + s3 < x
, if s1 − s2 + s3 < −x

This pattern is going to continue where the outcome class of x± s1± s2± s3±
⋯ ± xn depends on three things:
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• x

• t = s1 − s2 + s3 − s4 + s5 +⋯ + (−1)n+1sn

• The parity of n.
For an even n = 2k, we have:

x ± s1 ± s2 ± s3 ± s4 ±⋯ ± s2k ∈

⎧

⎪

⎪

⎨

⎪

⎪

⎩

 , if |x| < t
, if x > 0 and t ≤ x
, if x < 0 and t ≤ −x
 , if x = 0 and t = 0

When n = 2k + 1 (n is odd), we get:

x ± s1 ± s2 ± s3 ± s4 ±⋯ ± s2k+1 ∈

⎧

⎪

⎪

⎨

⎪

⎪

⎩

 , if |x| ≤ t
, if t < x
, if t < −x
 , cannot happen

Now let’s put everything together. What is the outcome class of G?
G = x + a ↑ + ∗k ± s1 ± s2 ±⋯ ± sn

(where all variables are numbers and s1 ≥ s2 ≥ s3 ≥⋯ ≥ sn)We can combine our tactics above to solve this. Just as before, t = s1 − s2 +
s3 −⋯+ (−1)n+1sn. We can consider that after the first nmoves, the value of the
game will be depends on who goes first.

• If L goes first, then, after n turns, the value will be x + t + a ↑ + ∗k.
• If R goes first, then, after n turns, the value will be x − t + a ↑ + ∗k.
Since we’ve already learned how to determine the outcome class of numbers

plus arrows plus nimbers, we can determine who can win that game to determine
the overall outcome class.

For example, consider:
G = 2+ ⇓ + ∗12 ± 3 ± 2
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t = 1, so after two turns to resolve the switches, the game will either be 3+ ⇓
+ ∗12 or 1+ ⇓ + ∗12. Both cases are in , so G ∈ .

For a more difficult example, consider:
G = −3+ ↑ + ∗3 ± 6 ± 3

This time, t = 3, and −x = t, so we need to take a closer look at the two
positions that could occur after the first two moves.

• IfL goes first, then after two moves, Lwill be playing first on ↑ + ∗3 ∈ .
• If R goes first, then after two moves, R will be playing first on −6+ ↑ + ∗
3 ∈ .

Whoever goes first wins, so G ∈ .
Recall that in these evaluations, we’re not figuring out how to addG to another

game. This is for deciding the outcome class after all addition has happened.
We have not covered all cases here. In fact, we can’t cover all the cases in a

way that is easy to calculate. Back in the 1980’s, F. L. Morris [5] showed that
it is PSPACE-hard to calculate the winnability of the sum of a bunch of shallow
partisan game values. This means that the best-known algorithms to calculate the
winner take an exponential amount of time in the worst cases.

The reason for this is that game sums can contain components more compli-
cated than numbers, arrows, nimbers, and switches. These components don’t
need to be much more complicated, just things of the form

{

{

5 |
|

4
}

|

|

|

2
}

.
Adding bunches of these together combine to create expansive game trees. Cur-
rently there is no algorithm to solve them significantly better than just exploring
the entire game tree.

Exercises for 4.2
⋆ 0)What is the outcome class of G = 5+ ⇑ + ∗6? (Answer 4.2.0 in Appendix)

1)What is the outcome class of G = −3+ ⇑ + ∗3?
2) Use a proof by strong induction to show that for any k ≥ 2, ↑>∗k.
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4.2. Determining Winnability

⋆ 3)What is the outcome class of G = −10 ± 5? (Answer 4.2.3 in Appendix)
4)What is the outcome class of G = −5 ± 10?

⋆ 5)What is the outcome class of G = 3 ± 3? (Answer 4.2.5 in Appendix)
6)What is the outcome class of G = 5 ± 7 ± 4?

⋆ 7)What is the outcome class of G = ±6 ± 6? (Answer 4.2.7 in Appendix)
8)What is the outcome class of G = −4 ± 2 ± 2?

⋆ 9)What is the outcome class of G = −2 ± 7 ± 3? (Answer 4.2.9 in Appendix)
10)What is the outcome class of G = 6 ± 8 ± 2?

⋆ 11)What is the outcome class ofG = ±6±3±3? (Answer 4.2.11 in Appendix)
12)What is the outcome class of G = −5 ± 3 ± 3 ± 3?

⋆ 13) What is the outcome class of G = 7 ± 6 ± 5 ± 4 ± 3? (Answer 4.2.13 in
Appendix)
14)What is the outcome class of G = −1 ± 6 ± 5 ± 4 ± 3 ± 2 ± 1?
15)What is the outcome class of G = −1 ± 6 ± 6 ± 5 ± 4 ± 3 ± 3?
16) Prove the case that G = x± s1 ± s2 ∈  iff x = 0 and s1 − s2 = 0. Hint: usetwo direct proofs, one in each direction.

⋆ 17) What is the outcome class of G = 1 ± 1+ ↑ + ∗? (Answer 4.2.17 in
Appendix)

⋆ 18)What is the outcome class ofG = ±4±4+ ↓? (Answer 4.2.18 in Appendix)
19)What is the outcome class of G = ±4 ± 4+ ↓ + ∗?
20)What is the outcome class of G = 4 ± 4+ ↓?
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⋆ 21) What is the outcome class of G = 4 ± 4+ ↓ + ∗? (Answer 4.2.21 in
Appendix)
22)What is the outcome class of G = −4 ± 4+ ↓?
23)What is the outcome class of G = −4 ± 4+ ↓ + ∗?

⋆ 24) What is the outcome class of G = 2 ± 7 ± 1+ ⇑ + ∗? (Answer 4.2.24 in
Appendix)
25)What is the outcome class of G = 5 ± 10 ± 4+ ⇓ + ∗4?

⋆ 26) What is the outcome class of G = ±4 ± 3+ ↓ + ∗ 8? (Answer 4.2.26 in
Appendix)
27)What is the outcome class of G = 2 ± 8 ± 6+ ↑ + ∗2?
28)What is the outcome class of G = 3 ± 4 ± 3 ± 2+ ∗4?

⋆ 29)What is the outcome class of G = ± ↑? (Answer 4.2.29 in Appendix)
30)What is the outcome class of G = ± ↑ + ∗?

4.3. Which Move Should we Make?

Our next question, “Which of our possible moves is part of a winning strategy?”
is only relevant if we already answered the previous question positively: we know
we can win, so which of our moves keeps us winning? This is a bit different than
the last section, perhaps deceptively so. The reason is that when analyzing the
outcome class of a position, we can assume that the canonical moves are available.
For example, in the game G = 1

2
+ ↓, we can assume that the 1

2
part is actually

the game { 0 |
|

1
}, meaning R has a move, on G, to 1+ ↓. It might be, however,

that G is actually
{

0 ||
|

3
4

}

+ ↓. This is still equivalent to 1
2
+ ↓, but the actual

options are different.
Deciding which move to make on G is a step that needs to happen after we’ve
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evaluated G. The calculations we make at this step no longer work if G is just a
component of a larger game. In general, we should be following this process:

1. Break G into a sum of independent components: G = G1 +G2 +⋯ +Gk.
2. Evaluate each of those components: G1 = v1, G2 = v2,…, Gk = vk.
3. Add the values together, so G = v1 + v2 +⋯ + vk.
4. Determine the outcome class of G.
5. If you can win, make a winning move.4

This section is about that last step. How do we decide which move to make?
When we’re evaluating the components, it will make our evaluation easier if

our values use only the four basic game types we’ve seen so far: numbers, nim-
bers, arrows, and switches. We already know how to add these together and
determine the outcome class. For example, we know what to do with this sum:

G = (7 ± 3 ± 1+ ∗3+ ↑) + (−5 ± 10 ± 3 ± 2+ ∗2+ ⇓)

G = (7 ± 3 ± 1+ ∗3+ ↑) + (−5 ± 10 ± 3 ± 2+ ∗2+ ⇓)
= 7 − 5 ± 10 ± 3 ± 3 ± 2 ± 1+ ∗3+ ∗2+ ↑ + ⇓

= 2 ± 10 ± 2 ± 1+ ∗ + ↓∈

We already have an idea of where we should play on one of these basic posi-
tions. In our example G above, the first player will always want to figure out the
component with the ±10 value and play there. In general, switches are great to
play on, nimbers are indifferent towards the “score” (but can certainly alter the
winnability), arrows are bad (but better than numbers), and numbers are the worst
components to play on (recall the Number Avoidance Theorem). This heuristic
order of choices works when G has a basic value. If we don’t have that luxury,
we will have to get a bit more creative.

There are two different ways we could go about finding a winning move:
4If you can’t win, then make a sneaky losing move that might trick your opponent.
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1. We could analyze each of the options to determine their outcome class.
When we find one that is a winning move, we choose that one.

2. Or, if we already know the value of the overall position, wemight be able to
see the difference in value for each of the moves. Then we can just subtract
that difference from the current value and check whether we’re still in a
winning outcome class.

Let’s test that second idea with an example, to double-check with the heuristic
we gave above. Consider this position, G ∶

G =
{

31
2
|

|

|

|

11
2

}

+
{

∗ |
|

0
}

+
{

∗ |
|

0
}

+
{

−1
|

|

|

|

−1
4

}

+
{

−1 |
|

3
}

We know how to find the value of G:

G =
{

31
2
|

|

|

|

11
2

}

+
{

∗ |
|

0
}

+
{

∗ |
|

0
}

+
{

−1
|

|

|

|

−1
4

}

+
{

−1 |
|

3
}

= 21
2
± 1+ ↓ + ↓ −1

2
+ 0

= 2 ± 1+ ⇓

∈ 

L must have a winning move. Let’s look at each of the options for L and see
how that changes the value.

{

31
2
|

|

|

|

11
2

}

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
a

+
{

∗ |
|

0
}

⏟⏞⏟⏞⏟
b

+
{

∗ |
|

0
}

⏟⏞⏟⏞⏟
c

+
{

−1
|

|

|

|

−1
4

}

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
d

+
{

−1 |
|

3
}

⏟⏞⏞⏟⏞⏞⏟
e

a ,
{

31
2
|

|

|

11
2

}

: This component equals 21
2
± 1. Let’s consider the base of

that (21
2
) to be an “average value”, then L can increase that by 1 by playing

here. The final value after moving here would be: 3+ ⇓.
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b , { ∗ |
|

0
}: This component equals ↓. Playing here replaces this with ∗, so

the overall value changes by ∗ − ↓=∗ + ↑. This is only infinitesimal, but it
is still a change (and in kind of the right direction). The overall value after
playing here would be: 2 ± 1+ ↓ + ∗.

c : This is the same position as in part b.
d ,

{

−1 ||
|

− 1
4

}

: This component equals − 1
2
, so moving here changes the

overall value by −1− (− 1
2
) = −1

2
. The final value after playing here would

be: 11
2
± 1+ ⇓.

e , { −1 |
|

3
}: This component equals 0, so moving here changes the overall

value by −1 − 0 = −1. The overall value after playing here would be:
1 ± 1+ ⇓.

Of all of these, the move after a is the largest, so playing in the switch is the
best option5.
As we mentioned before, we now have all the tools we need to play on po-

sitions that nicely evaluate into our four basic value types. Unfortunately, this
doesn’t help us when there’s something that doesn’t fall into these categories,
e.g.

{

9 ||
|

{

6 |
|

4
}

}

.
We know how to deal with the right-hand side of this:

{

9 ||
|

{

6 |
|

4
}

}

=
{

9 |
|

5 ± 1
}. Additionally, we can certainly determine the outcome class ()

and figure out what to do if this is the entire game. If it’s not, we don’t have a
good way to add this to the rest of the components, nor decide whether this is
where we should be making our move.

Let’s address this second part by introducing some new terms for studying
these hot games. In particular, we will want:

• The mean value (or fair value) of a position. This will be the average value
if two players were to optimally play on a sum of multiple copies of that
position.

5We leave showing this for exercise 4.3.0 .
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• The temperature of a position, which will be the “payoff” for a player to go
first in that game.

With a switch, G = a ± b, we already defined these parts, but with different
names. The base of G, a, is also its mean value, and the heat of G, b, is also its
temperature.

How canwe define thesemore general terms for positions such as
{

9 ||
|

{

6 |
|

4
}

}

?
We’ll need to start by using stops, which we defined back in section 3.5. This
time, we’ll want to adorn the stops, by also indicating who took the last turn.
For example, the left stop of ±2, LS(±2), was 2. We’ll update that by adding
a subscript L to identify that L took the last turn. Thus, LS(±2) = 2L and
RS(±2) = −2R.We want to identify the confusion interval for each of these hot games. The
confusion interval of a game, G, is the set of numbers6 confused with G. For ±2,
the confusion interval is [−2, 2], which is the set of all numbers between −2 and
2, including both endpoints.

Math Diversion: Interval notation
Early in our study of mathematics we start to compare values using inequal-
ities. We write the solutions to statements like

2x + 6 ≤ 4

with their own inequalities:
x ≤ −1.

This is visualized with the following number line.

−3 −2 −1 0

We can also write this in interval notation as
x ∈ (−∞,−1].

6The confusion interval strictly contains numbers, not all game values.
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This says that x is in the set of all real numbers from −∞ up to and including
−1. Note the square bracket ] at the right. This signifies that −1 is included
in the set, while the parenthesis (or, shudder, the open bracket) on the left
signifies that −∞ is not in the set of solutions. We very rarely see∞ or −∞
included in a set of solutions since they are not real numbers, (though they do
come up when considering extended reals, and we’ve seen something similar
in the game value !).
If we want to represent a disjoint collection of intervals, then we simply

use the union operator.
|2x + 1| > 1

(2x + 1) > 1 or (2x + 1) < −1
x > 0 or x < −1
(0,∞) ∪ (−∞,−1)

How would you write the solution represented by the following number
line?

−3 −2 −1 0 1 2 3
A:.Thisincludesallvaluesfrom−3to−1.5including−3butnotinclud-
ing−1.5,andallvaluesbetween0and3notincludingeitherendpoint.
Wewritethis[−3,−1.5)∪(0,3).

Whenwe use a square bracket thenwe say that side of the interval is closed,
and a parenthesis signifies that side is open. This terminology comes from
mathematical analysis where sets are considered open, closed, neither or both
(clopen) depending on the metric.

Note that the interval (0, 0) is empty, and [0, 0] = {0} has only one ele-
ment.
If RS(G) = aP1 and LS(G) = bP2 , then our confusion interval is going to

be between a and b, and may or may not include either end7. Each end of the
7Be careful here! It can be easy to think that the Left Stop is on the left-hand-side of the interval
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interval is closed if the stop’s adornment is the same as the player who went first,
and open otherwise. So, for example, if RS(G) = aR and LS(G) = bR, then the
confusion interval of G is: [a, b).
The mean value of any position G is contained between the ends, even if the

confusion interval is open on one or both ends. If the confusion interval of G is
(a, b) and a = b, then a is the mean value of G.
Above we said that we can use multiple copies of a game to find its mean value.

To do this, we will find the stops of n × G, then divide them by n. This can give
us a more-narrow confusion interval, where the mean value still has to reside.
More formally, ∀n ∈ ℕ ⧵ {0} ∶ the mean value of G, m(G), must be between
RS(n × G)∕n and LS(n × G)∕n.
Let’s look at G = ±2 as an example and check out the confusion intervals of

n × G for different copies of n.
• For G, we already know that the confusion interval is [−2, 2]. Thus, −2 ≤
m(±2) ≤ 2.

• For 2 × G, we need to consider optimal moves on ±2 ± 2 = {

2 |
|

−2
}

+
{

2 |
|

−2
}. In this case, it’s pretty simple, as each player will play once on

each of the switches. Thus, LS(2 × G) = 0R and RS(2 × G) = 0L, so the
confusion interval of 2 × G is (0, 0). Thus, 0

2
≤ m(±2) ≤ 0

2
, so m(±2) = 0.

• Let’s take a look at 3×G just to see what happens. Here, we are finding the
optimal moves on G + G + G. For L, the first move will be to 2 + G + G,
then R moves to 0 +G, then L moves to 2, so LS(3 ×G) = 2L. Similarly,
RS(3 × G) = −2R, so we again have the confusion interval: [−2, 2]. This
does help us a bit, however, because we divide each of those bounds by
n = 3, so we would know that: − 2

3
≤ m(G) ≤ 2

3
. Naturally, this doesn’t

matter, as we already found the correct value in the previous iteration.
We could go further with the above example. At every even mulitple of G, we

would find that m(G) = 0, while the odds would tell us that − 2
n
≤ m(G) ≤ 2

n
.

Let’s try this with our other example, G =
{

9 ||
|

{

6 |
|

4
}

}

. Here we’ll see
that the midpoint of the confusion interval is not always the mean value. Let’s let
H = n × G and test out different values of n:

(and vice versa), but in this case it’s the other way around.
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n = 1 : LS(H) = 9L, and RS(H) = 6L, so the confusion interval is (6, 9], and
6 ≤ m(G) ≤ 9.

n = 2 : LS(H) = 15l. For RS(H), after Rmoves to { 6 |
|

4
}

+G, it’s better for
L to play inG than the switch. Thus,RS(H) = 13R, the confusion intervalofH is [13, 15], so 6+ 1

2
≤ m(G) ≤ 7+ 1

2
. Notice that the midpoint of this

interval (7), is not the midpoint of the previous one (7 + 1
2
).

n = 3 : As we reasoned before, it’s better for L to play on G than the switch, so
LS(H) = 22L, while RS(H) = 19R. Thus, the confusion interval of H
is [19, 22], and 6 + 1

3
≤ m(G) ≤ 7 + 1

3
. At this point, the midpoint of the

interval when n = 1 isn’t even an option any longer.
n = 4 : LS(H) = 29R, and RS(H) = 29L, so the confusion interval of H is

(29, 29), and furthermore, 7 + 1
4
≤ m(G) ≤ 7 + 1

4
, meaning m(G) = 7 + 1

4
.

Let’s do another example with very similar numbers: G =
{

7 ||
|

{

6 |
|

4
}

}

.
In our analysis of multiples ofG, let’s note that if L has to decide whether to play
on a single G component or { 6 |

|

4
}, they will choose to avoid 4 and play on the

6 instead. Let’s again considerH = n × G and test this for different values of n:
• n = 1: LS(H) = 7L and RS(H) = 6L, so the confusion interval is (6, 7]

and 6 ≤ m(G) ≤ 7.
• n = 2: LS(H) = 13L and RS(H) = 12L, because L will play on the
{

6 |
|

4
} component every time, as we mentioned above. Thus, the confu-

sion interval is (12, 13] and 6 ≤ m(G) ≤ 6 + 1
2
.

• n = 3: LS(H) = 19L and RS(H) = 18L, so the confusion interval is
(18, 19] and 6 ≤ m(G) ≤ 6 + 1

3
.

• n = 4: LS(H) = 25L and RS(H) = 24L, so the confusion interval is
(24, 25] and 6 ≤ m(G) ≤ 6 + 1

4
.

There is definitely a pattern here. Due to the way L will react to R’s moves
every time, LS(n×G) = (7+6(n−1))L = (1+6n)L andRS(n×G) = 6nL. You
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may see that as n gets bigger, LS(n×G)
n

tends towards 6. If you already know some
Calculus, you know that we write this formally with limits: limn→∞

(

1+6n
n

)

= 6.
Even though our our iterative process above will never exactly isolate m(G), by
instead using the limit, we can see that m(G) = 6. (We can also see that the right
stop will always be 6.)

Let’s look at what happens if we try this with a game which is not hot. The
position G =

{

6 ||
|

{

6 |
|

4
}

}

is equal to 6 +⧾2. Let’s see what happens with
H = n × G when we find the confusion intervals. (As it turns out, we only have
to try this with n = 1.)

When n = 1, LS(H) = 6L and RS(H) = 6L. Thus, the confusion interval is
(6, 6]meaning 6 ≤ m(G) ≤ 6. Our confusion interval is empty, however, as there
are no numbers that are confused with G. Mean values are relegated to numbers,
so saying that it is 6 doesn’t fit because G > 6.

Now that we have some idea about the mean value (even if we can’t find it
in all cases), let’s talk about the temperature. The temperature of a game G, is
an indication of the importance of playing first in a game. In switches, this is
equivalent to the heat. Temperature can be thought of as an extension of heat to
all games8. In another characterization, the temperature, t(G), is the minimum
number of points a player would need to be awarded to give up going first on G.
If they are offered less than t(G), then they wouldn’t be willing to pass to their
opponent. If they are offered more than t(G), they will always be happy taking
the offer.

To calculate t(G), we will need to use our notion of stops again, as well as the
notion of cooling. Ğc , or “G cooled by c degrees” is:

8It’s not perfect, however, so it is in some ways an approximation for games more complicated
than switches.
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Ğc =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

G , if G is an integer
{

ĞL
c − c

|

|

|

ĞR
c + c

}

, if max
(

RS(ĞL
c)
)

− c ≥ min
(

LS(ĞR
c)
)

+ c

max
(

RS(ĞL
t)
)

− t , if ∃t < c such that
max

(

RS(ĞL
t)
)

− t = min
(

LS(ĞR
t)
)

+ t

, where c is a number ∈ [−1,∞). ĞL
c − c means that we’re recursively cool-

ing each left option by c and then afterwards subtracting c from it. Note: the
conditions in the definition above cover all the cases.

In other words, if the game is hot, then cooling it lowers the values on the left
and raises the values on the right until the stops meet. The third case covers when
cooling by c would otherwise lead to the stops passing each other. In that case,
we have to back up and use t instead. That maximum cooling t is exactly the
temperature, t(G), and the value the sides converge to, max

(

RS(ĞL
t)
)

− t is
exactly the mean value, m(G).

Let’s consider G =
{

3 |
|

±2
}. Before we try cooling it, let’s first find the

confusion interval.

LS(G) = 3 ✓
RS(G) = LS(±2)

= LS(
{

2 |
|

−2
}

)
= 2 ✓

Thus, the confusion interval is [2, 3). Let’s see what happens when we cool G
by 10. We might try to start like this, but the second line is incorrect:
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Ğ10 =
{

3 − 10 ||
|

±̆210 + 10
}

=
{

−7 ||
|

{

2 − 10 |
|

−2 + 10
}

+ 10
}

(incorrect)
=
{

−7 ||
|

{

−8 |
|

8
}

+ 10
}

=
{

−7 |
|

10
}

= 0

The reason for this is that ±̆210 ≠
{

2 − 10 |
|

−2 + 10
}, because there is a

smaller cooling factor that sufficiently cools it until the stops are equivalent.
Here’s what happens if we ignore that second case in our definition and continue
to the last case. (We’ll use a→ instead of = because it’s incorrect.)

±̆210 →
{

2 − 10 |
|

−2 + 10
}

=
{

−8 |
|

8
}

Notice that the (max) stop of the left side is less than the (min) stop of the right
side. This is an indication that we’ve gone too far! If you see that, you’ve cooled
much and need to try a smaller u.
We can easily see what the smallest u would be here for this simple switch to

make the stops meet:
{

2̆u − u
|

|

|

−̆2u + u
}

=
{

2 − u |
|

−2 + u
}

=
{

0 |
|

0
} for u = 2

Let’s try cooling G by 2:

Ğ2 →
{

3 − 2 ||
|

±̆22 + 2
}

=
{

1 ||
|

{

2 − 2 |
|

−2 + 2
}

+ 2
}

=
{

1 |
|

∗ +2
}
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The stops aren’t equal and the left is less than the right, so we’ve cooled this
game too far. The distance between the two is 1, so we recommend cooling by
1∕2 less:

Ğ3∕2 →
{

3 − 3∕2 ||
|

±̆23∕2 + 3∕2
}

=
{

3∕2 ||
|

{

2 − 3∕2 |
|

−2 + 3∕2
}

+ 3∕2
}

=
{

3∕2 ||
|

{

1∕2 |
|

−1∕2
}

+ 3∕2∕
}

=
{

3∕2 |
|

3∕2 ± 1∕2
}

= H

LS(H) = 3∕2 < 2 = RS(H), so we’re still cooling too far (and H ≠ Ğ3∕2).There’s now a difference of 1∕2, so let’s try cooling by 1∕4 less:

Ğ5∕4 →
{

3 − 5∕4 ||
|

±̆25∕4 + 5∕4
}

=
{

7∕4 ||
|

{

2 − 5∕4 |
|

−2 + 5∕4
}

+ 3∕2
}

=
{

7∕4 ||
|

{

3∕4 |
|

−sfrac34
}

+ 5∕4∕
}

=
{

7∕4 |
|

5∕4 ± 3∕4
}

= H

LS(H) = 7∕4 < 2 = RS(H), so we’re still cooling too far (and H ≠ Ğ5∕4).There’s now a difference of 1∕4. We could either try cutting that in half again, but
that hasn’t worked well, so we might rather try 1. Let’s try 1:

Ğ1 →
{

3 − 1 ||
|

±̆21 + 1
}

=
{

2 ||
|

{

2 − 1 |
|

−2 + 1
}

+ 1
}

=
{

2 ||
|

{

1 |
|

−1
}

+ 1
}

=
{

2 |
|

1 ± 1
}

= H

LS(H) = 2 = RS(H), and no smaller cooling amount will keep the stops
equal, so we’ve cooled by the correct amount. t(G) = 1 and m(G) = 2.
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Note that we mentioned possible values of t are in the range [−1,∞). There
are some cases here:

• Negative-temperature games are cold. Numbers are cold games. 5̆−1 = 5,so−1 is the smallest value where the stops meet and are equal to the single-
valued confusion interval. Similarly, ̆3∕2−1∕2 =

{

1 + 1
2
|

|

|

2 − 1
2

}

=
{

3∕2 |
|

3∕2
}.

This is the lowest t that works, so t(3∕2) = 1∕2.
• Games with zero temperature are tepid. These are any games where the

stops are already equal and include nimbers: ∗̆0 =∗ and other infinitesi-
mals.

How should we best find the correct t? With G =
{

3 |
|

±2
}, we just tried

things out until they worked. As mentioned earlier, possible temperature values
go from [−1,∞). In the above example, after we saw that t(G) < 10 because
10 supercooled it, we then knew t(g) ∈ [−1, 10). Once we have two endpoints,
we can perform a binary search, which means we take the midpoint of our two
endpoints, test that, and if we haven’t finished, we can try again.

Sometimes, however, we can be a little smarter about our choices. Since
LS(G) > RS(G), we know that we’re going to need positive cooling, so our
interval to search is actually (0, 10). Furthermore, if cool a game by an additional
c, each stop can move inward by at most c. Thus, if the difference between stops
is at k, the fastest the stops can converge is by cooling by k∕2more. Since the ini-
tial difference in stops is 1, we need to cool by at least 1∕2, so the actual interval
is (1∕2, 10).

We could use this tactic to start with a bottom-up search. If we started by
cooling by 1∕2, as in one of the examples above, the space between the stops
there is 1∕2, so we’d have to cool by at least 1∕4. However, if you notice that
the left stop came in from 3 to 5∕2 and the right stop didn’t change, you might
expect this pattern to continue and choose to cool by another 1∕2. And, if you
did overshoot with this, you’d have a very short interval to search. Of course, in
this case, it turns out to be the correct amount to cool by.

Temperature is a good heuristic to use to choose which component to play on.
It works when all components are switches, numbers, and nimbers. Choosing to
play on the game with the highest temperature is a strategy known as hotstrat. It
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is possible, however, for hotstrat to pick the wrong component to play on. For
example, consider the game ±1 + ±1 + ⧾100. Here, if L plays on one of the
components with temperature 1, then R will respond on ⧾100, yielding ±1+ 1+
{

0 |
|

100
}. Then L must respond on the hotter switch, leaving ±1 + 1, from

whichR can move to 0 and win. However, if L had instead started by playing in
the tepid infinitesimal component, they would leave ±1 + ±1 = 0, and thus win
the game.

Exercises for 4.3

0) Prove that in the first example in the chapter, G = {

31∕2 |
|

11∕2
}

+
{

∗ |
|

0
}

+
{

∗ |
|

0
}

+
{

−1 |
|

−1∕4
}

+
{

−1 |
|

3
}, the best move forL is to play on the switch

component
(

{

31∕2 |
|

11∕2
}

)

. Write the proof by comparing that option to the
other Left options. (Note: the solution to this is longer than you might expect.)

⋆ 1) Consider G =
{

{

4 |
|

2
}

|

|

|

−2
}

. Find the left and right stops and the con-
fusion intervals of G, 2 × G, 3 × G, and 4 × G. Is this information enough to
find the mean value of G, m(G)? If so, find m(G). Additionally, find the temper-
ature, t(G). (You do not need to show calculations of Ğt that reach the incorrect
temperature.) (Answer 4.3.1 in Appendix)

2) Consider G =
{

10 ||
|

{

3 |
|

2
}

}

. Find the left and right stops and the con-
fusion intervals of G, 2 × G, 3 × G, and 4 × G. Is this information enough to
find the mean value of G, m(G)? If so, find m(G). Additionally, find the temper-
ature, t(G). (You do not need to show calculations of Ğt that reach the incorrect
temperature.)

⋆ 3) Consider G =
{

100 ||
|

{

−10 |
|

−20
}

}

. Find the left and right stops and the
confusion intervals of G, 2 × G, 3 × G, and 4 × G. Is this information enough
to find the mean value of G, m(G)? If so, find m(G). Additionally, find the
temperature, t(G). (You do not need to show calculations of Ğt that reach the
incorrect temperature.) (Answer 4.3.3 in Appendix)
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4) Consider G =
{

{

−2 |
|

−10
}

|

|

|

−20
}

. Find the left and right stops and the
confusion intervals of G, 2 × G, 3 × G, and 4 × G. Is this information enough
to find the mean value of G, m(G)? If so, find m(G). Additionally, find the
temperature, t(G). (You do not need to show calculations of Ğt that reach the
incorrect temperature.)

⋆ 5) Consider G =
{

2 ||
|

{

0 |
|

−2
}

}

. Find the left and right stops and the con-
fusion intervals of G, 2 × G, 3 × G, and 4 × G. Is this information enough to
find the mean value of G, m(G)? If so, find m(G). Additionally, find the temper-
ature, t(G). (You do not need to show calculations of Ğt that reach the incorrect
temperature.) (Answer 4.3.5 in Appendix)

6) Consider G =
{

{

1 |
|

0
}

|

|

|

−5
}

. Find the left and right stops and the con-
fusion intervals of G, 2 × G, 3 × G, and 4 × G. Is this information enough to
find the mean value of G, m(G)? If so, find m(G). Additionally, find the temper-
ature, t(G). (You do not need to show calculations of Ğt that reach the incorrect
temperature.)

⋆ 7) Consider G =
{

{

7 |
|

0
}

|

|

|

−5
}

. Find the left and right stops and the confu-
sion intervals of G, 2 × G, 3 × G, and 4 × G. Determine m(G) from the limit of
the stops of n × G, then find t(G). (Answer 4.3.7 in Appendix)

8) Consider G =
{

100 ||
|

{

75 |
|

0
}

}

. Find the left and right stops and the
confusion intervals ofG, 2×G, 3×G, and 4×G. Determine m(G) from the limit
of the stops of n × G, then find t(G).

⋆ 9) Consider G =
{

{

−10 |
|

−20
}

|

|

|

−25
}

. Find the left and right stops and the
confusion intervals ofG, 2×G, 3×G, and 4×G. Determine m(G) from the limit
of the stops of n × G, then find t(G). (Answer 4.3.9 in Appendix)

10) Consider G =
{

{

19 |
|

1
}

|

|

|

−1
}

. Find the left and right stops and the
confusion intervals ofG, 2×G, 3×G, and 4×G. Determine m(G) from the limit
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of the stops of n × G, then find t(G).

⋆ 11) Consider G =
{

{

10 |
|

9
}

|

|

|

{

2 |
|

0
}

}

. Use the tactics we learned to find
m(G) and the temperature of t(G). Make sure you explain the optimal strategies
each player uses while describing the stops! (Answer 4.3.11 in Appendix)

12) Consider G =
{

{

10 |
|

0
}

|

|

|

{

−1 |
|

−9
}

}

. Use the tactics we learned
to find m(G) and the temperature of t(G). Make sure you explain the optimal
strategies each player uses while describing the stops!

⋆ 13) Consider G =
{

{

5 |
|

3
}

|

|

|

{

2 |
|

1
}

}

. Use the tactics we learned to find
m(G) and the temperature of t(G). Make sure you explain the optimal strategies
each player uses while describing the stops! (Answer 4.3.13 in Appendix)

14) Consider G =
{

{

100 |
|

−1
}

|

|

|

{

−2 |
|

−3
}

}

. Use the tactics we learned
to find m(G) and the temperature of t(G). Make sure you explain the optimal
strategies each player uses while describing the stops!

4.4. More strategy stealing

Many combinatorial games, both impartial and partisan, involve pieces that are
placed and which then remain unmoved throughout the duration of play. Such
games are called placement games. COL is one example that we’ve seen, but so
are CHOMP, NODE KAYLES, and many others since moves can be imagined as
placing blocking pieces on the board. CLOBBER and KONANE are not placement
games since pieces are moved around the board. In this section we introduce
another placement game with some interesting mathematical properties.
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4. Strategy

HEX
HEX is a partisan placement game played on a parallelogram-shaped board
of hexagonal spaces. The four edges of the board are colored, blue on the
left and right, and red on the top and bottom. Players take turns adding
a single piece of their color, and the first to complete an unbroken line
of monochromatic pieces of their color connecting their two sides of the
board wins.

→ →

Left places a piece, then Right blocks for the win.

HEX is played in tournaments and has been studied pretty extensively. It’s not
an easy game to solve, which makes it more fun to play than, say, NIM, which we
all know how to win at this point in the book. A number of HEX variants have
sprung up, including FOLLOW THE LEADER where one player must, if possible,
place their piece next to the opponent’s previously placed piece.

One thing you have probably noticed about HEX is that game play ends not
when the board is full, but once a winning condition has been met. CGT usu-
ally assumes that play will continue until neither player has a move remaining,
but we’ve established an actual condition under which a player has won even if
playable spaces remain on the board. This is familiar to every reader who has
player TIC-TAC-TOE/NAUGHTS AND CROSSES. There are generally two ways to
handle this: Either the board becomes unplayable by both players immediately
following a winning move, or the winner may continue to play on the board and
the loser may not. You can see how a win on a HEX board under the latter con-
vention can have a big effect on game sums, thus making the entire board itself
relatively hot. HEX is also played under scoring game rules, wherein winner ac-
tually receive points based on the number of remaining empty spaces, but scoring
game analysis is beyond the scope of this book.

Since HEX is relatively unique among the universe of combinatorial games in
that a winner can be determined before all available spaces are played, it’s natural
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to wonder whether a game always ends with a winner in this way. It turns out that
it will, and the proof is simpler than you might expect.
Theorem 4.4.1. Every completed game of HEX has an unbroken monochromatic
path between the sides of the same color.

Proof. We will prove this directly. Call the side of a hexagon an edge, and refer
to the corners as ul, ur, ll, lr for upper left, upper right, lower left, and lower right,
respectively. Consider a filled HEX board, and note that every edge has either red
or blue on either side if we include the colored sides of the board itself. Draw
an unbroken path P along edges beginning in ll in the following way: proceed
from vertex u to vertex v if the edge uv has blue to its left and red to its right,
and continue until reaching ul, ur, ll, or lr. Note that P will always end at one
of the four corners of the board, since stopping in the middle of the board would
imply that there is an edge with blue to the left and red to the right, but such a
configuration is impossible since pieces are hexagonal and P may proceed around
any given piece if necessary.

Now note that if P ends at ul then there is an unbroken red path of pieces
between the top and bottom sides of the board, and hence R is the winner. Simi-
larly, if P ends in lr then L is the winner. In the exercises you will determine the
winner in the other two cases.
As we noted above, HEX is quite hard to analyze. However, we can determine

the winner on an empty board of dimension n × n in a familiar way. Recall in
Section 0.8 that any empty rectangular board in CHOMPis in . We proved this
using a strategy stealing argument. We can do the samewithHEX, and the process
can be applied to some other placement games, as well. We begin with a lemma.
Lemma 4.4.2. If a player has a winning option on a HEX positionH , then they
also have a winning move on H ′, the position H with any extra piece of the
player’s color.

Proof. Assume without loss of generality that L has a winning move in H , and
that H ′ is H with an extra blue piece at position x. If L’s winning move on H
is to play on x, moving H to H ′, then they can play to another place and the
argument follows inductively. Similarly, if L’s winning move onH is to play on
a different position y, then y is also free in H ′ and L can play there on H ′, as
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well. Again, an inductive argument carries us to the fact thatH ′ is also a winning
position for L.
Now we proceed with our strategy stealing argument with a proof by contra-

diction, much like we did for the proof of Theorem 0.8.1.
Theorem 4.4.3. Any empty HEX board is in  .
Proof. Assume that a given empty board B of dimensions n × n is in  , so the
second player has a strategy S to win, and without any loss of generality, assume
that L is the first player. L can make an arbitrary move to position x0, and then
follow the strategy S as if R was the first to move. If at any point S calls for the
position x0 to be played, then L can instead play to any other open position x1,and continue this process. By Lemma 4.4.2 the existence of an extra blue piece
at any position xi does not negatively affect L’s winning strategy. The winning
strategy S has been co-opted byL and hence the game is in , contradicting our
assumption that such strategy for the second player exists.

Interestingly, this argument was first introduced by JohnNash but not published
until a paper on TIC-TAC-TOE in 1963 [?].

Exercises for 4.4
0) Complete the proof of Theorem 4.4.1.

⋆ 1) Determine the winner on an empty HEX board of height 2 and width n. (An-
swer 4.4.1 in Appendix)
2) Determine the winner on an empty HEX board of height 3 and width n.
3) Use a strategy stealing argument to prove that the first player cannot lose in
TIC-TAC-TOE.

⋆ 4) Using the above result, show that TIC-TAC-TOE always ends in a tie when
played perfectly by both players. (Answer 4.4.4 in Appendix)
5) Is an empty HEX board of dimensions n × n under the Follow The Leader
convention (FTL) always in ? Prove or disprove.
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While we have been primarily focusing on combinatorial games, any introduc-
tion to the mathematics of games should include a discussion on other types of
games. We have all played, and sometimes enjoyed, games that use cards, dice,
or spinners. These are non-combinatorial games since they contain hidden infor-
mation or depend on probability. But we can still get deeply into the mathematics
of these games while remaining true to the focus of this text.

5.1. Card games

A standard deck of 52 cards contains 13 ranks: 2, 3, 4, 5, 6, 7, 8, 9, 10, J , Q,K,A,
each appearing on cards of four suits:♡hearts,♣ clubs,♢diamonds, and♠ spades.

You should note here that there are 1326 pairs of distinct cards in the deck:
2♠2♡, 2♠3♡, 2♠4♡, etc.

Now spend a little time thinking about howmany sets there are of three distinct
cards in the deck. You should find 22 100, and at the same time realize that this
is a lot of work. As you can see, these numbers increase pretty rapidly as n, the
number in each set, increases. In fact, if n = 5 then there are 2 598 960 possible
hands.

These are examples of combinatorial problems. The term combinatorics is
used for counting things, often large sets of things, using mathematical methods.

This increase we see as n increases is called combinatorial explosion. This is
when one factor in a situation increases and another aspect increases far more
rapidly.

We would like to be able to count the sizes of these sets easily. In order to
do that we need to build up a bit more of a mathematical foundation of counting
outside of the theory of games.
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Math Diversion: Counting with repetition

Say that we want to generate all possible passwords of length exactly eight,
where each character follows the following restrictions. How many pass-
words are possible in each case?

Lowercase letters or digits (e.g. ngℎ4k628)

A:.(26+10)8≈2.8×1012

Lowercase or uppercase letters, digits (e.g. nGH4k628)

A:.(26+26+10)8≈2.2×1014

No longer limited to 8 characters, how many passwords are possible using
exactly three words from the Oxford English Dictionary, which currently
contains 171 476 words. Repetition of words is permitted. (e.g. glamorous-
truculent-spell)

A:.(171476)3≈5×1015,andfareasiertoremember

Note how including uppercase letters increases the possible number of
passwords by a factor of almost 100.

These are examples of combinatorial problems where each option can be
repeated. Once a character is used in a password there is no reason it can’t be
used again. We can increase the entropy of the password (how unpredictable
it is) by allowing variable length passwords. Let’s repeat the above questions
but with variable passwords lengths.

How many passwords are possible that use lowercase letters or digits and
have length 3 up to 8?

A:.363+364+⋯+368≈2.9×1012

What about lowercase or uppercase letters or digits, with length 3 up to 8?
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5.1. Card games

A:.623+⋯+628≈2.2×1014

Notice that the entropy is not increased by that much over the restriction
of fixed length passwords. Also, the clever Calculus student will notice a
partial sum.

If a password has length n0 to n1 and is generated from a pool of x-many
distinct characters, then write out how many passwords are possible using a
series, and find a closed-form solution.

A:.
n1 ∑

k=n0
xk.UsetheformulaSn=arn−1

r−1witha=xn0andn=(n1−n0+1)

togetxn0
(

xn1−n0+1−1
x−1

)

.

Math Diversion: Counting permutations

Sometimes we cannot reuse values. The usual examples are a relay team
or a class seating chart, so let’s use something else.

Say that you’ve recently angered the local clowning guild by dodging a
squirting flower on one’s lapel leading to the stream hitting a local police
officer. The clowns have promised to exact revenge. All twelve members of
the guild pull up to you in a tiny car, and three of them plan to climb out, one
at a time, to attack you with pies. How many ways can they do this?

A:.(12)(11)(10)=1320

What if all twelve plan to attack?

A:.12!=479001600

There is a great deal more we can do with permutations but this is enough for
our study of games. Now it’s time to move to counting without repetition, but
where the order no longer matters.
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Math Diversion: The binomial coefficient and counting combinations

Combinations, collections of elements forming an unordered set, are prob-
ably themost relevant to our study of games. Let’s stick with our clown guild.

The clowns want to bake pies. They do not care how good they taste.
There are seven different fillings they can use: pumpkin, whipped cream,
shredded coconut, blueberry, rhubarb, peach, and chicken. How many pies
are possible if each pie has one, two, or seven ingredients?

A:.Thereare7pieswithoneingredient,21pieswithexactlytwo,and
onlyonepiewithallseveningredients.

To find how many are possible with exactly 4 ingredients is difficult using
brute force, i.e. just trying to list them all. Instead, consider the act of choos-
ing ingredients. If you need 4 and it matters in what order you select them,
then there are (7)(6)(5)(4) = 840 ways to do this. Note that this is 7!

(7−4)!
.

However, in this problem we just want to select 4 fillings and set them on the
counter to be added to the recipe; the way they’re lined up on the counter isn’t
important. So, for example, pumpin-coconut-peach-chicken is equivalent to
pumpkin-coconut-chicken-peach. Therefore we need to divide this number
by the number of ways to arrange the four we’ve chosen.

How many 4-filling pies are possible?

A:.
7!

(7−4)!4!=35

In general, if the clowns have n-many fillings from which to choose and
they want to choose k-many for a pie, how many ways can they do so? This
is denoted (n

k

) and called the binomial coefficient.

A:.
(

n
k

)

=
n!

(n−k)!k!

Instead, the clowns start with a pie crust and make as many distinct pies as
possible: pumpkin, pumpkin-whipped cream, one with all seven ingredients,
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etc. How many pies do they make with at least one filling?

A:.27−1=127pies

Now we return to cards. A standard poker hand is five cards. For each of the
following, determine how many possible ways there are to get the given hand.
Assume A is the highest rank and can’t be treated as below 2.
For example, a flush is all five cards of the same suit. One example of a flush

is 2,7,J ,4,9♡and another is 3,7,J ,4,9♡. In order to get a flush, we must have a
suit (4

1

) and then five ranks (13
5

). So the total number of flushes is (4
1

)(13
5

).
As another example, two pairs could be 2♢2♠4♣4♢J♠. To count the number

of distinct hands with two pairs that does not contain three-of-a-kind, we first
pick two ranks, then two suits in each rank, then finally a fifth card from the
remainder of the deck that doesn’t match either of the chosen ranks. So the answer
is (13

2

)(4
2

)(4
2

)(44
1

).
For the following hands, determine how many distinct combinations are pos-

sible.

• A straight (five ranks in a row regardless of suit, e.g. 5♢6♠7♣8♢9♠)

• A straight flush (a straight but all in the same suit)

• A full house (two cards of one rank, three of another)

• Four of a kind (four of one rank, the fifth card can be anything else)

• A single pair that is not part of three of a kind, nor a full house
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A:.Thelowestcardinastraightcanbe2−10,sothereareninesuchchoices.
Notethatnomatterhowthecardsaredealtthereisonlyonewaytoarrange
themiftheyhappentoformastraight.Eachcanbeanysuit.Soweget
(9)45=9216possiblestraights.
Thereareonly

(

4
1

)

9=36straightflushes.
Foreachfullhouse,pickatriple,thenapair.Thetriplecanbeanythree
suits,andthepairanytwo.Thereare(13)(12)

(

4
3

)(

4
2

)

=3744fullhouses
possible.
Forfourofakindpickarank,thenafifthcard.(13)(48)=624.
Finally,tocountthenumberofwaystogetasinglepair,pickarank,then
twosuits,thenthreedifferentranks,andfinallythreesuits.13

(

4
2

)(

12
3

)

43=
1098240.

There is another useful tool for counting items in the union of sets called the
Inclusion/Exclusion Principle.

Math Diversion: Inclusion/Exclusion

Let A and B be sets with some overlap, e.g. A represents the set of Math-
ematics majors and B the set of Computer Science minors at a university.
We want to send invitations to all of them for a party - likely the greatest
party ever. Knowing both |A| and |B| is insufficient to determine how many
invitations we need.

If we order |A| + |B| many invitations, then we’ve potentially wasted
money ordering invitations for some people twice, namely those in the set
A ∩ B. So we will need to subtract off those extra invitations from the total
count, leaving us with |A ∪ B| = |A| + |B| − |A ∩ B|. This is the Inclu-
sion/Exclusion Principle.

Now say that we want to invite another group; C is the set of students
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who tutor mathematics. How do we use Inclusion/Exclusion to determine
the number of invitations to order?

A:.Thisisthesameasfinding|A∪B∪C|,whichisequalto|A|+|B|+
|C|−|A∩B|−|A∩C|−|B∩C|+|A∩B∩C|.

Note that we needed to not only subtract the pairwise intersections, but
then add the three-way intersection back on. That’s because we added in
|A∩B ∩C| three times, then subtracted it three times, and hence had to add
it back one more time.

Now say that there are 20Mathematics majors, 30 Computer Science mi-
nors, and 9 tutors. 5Mathematics majors are tutors, 3 CS minors are tutors,
and 2 students are all three. In total there are 50 students. Howmany students
are Mathematics majors and CS minors but not tutors?

A:.ByInclusion/Exclusionwehave50=|A|+|B|+|C|−|A∩B|−
|A∩C|−|B∩C|+|A∩B∩C|.So40=20+30+9−|A∩B|−3−5+2⇒
50=53−|A∩B|⇒|A∩B|=3

Exercises for 5.1
⋆ 0) How many 6 character license plates are possible in which the first three char-
acters are letters and the last three are digits? (Answer 5.1.0 in Appendix)
1) How many 6 or 7 character license plates are possible in which the first three
characters are letters and the remaining characters are digits?
2) How many 6 or 7 character license plates are possible in which the first three
characters are letters, no letters are repeated, and the remaining characters are
digits?

⋆ 3)Which is a stronger password? Justify.
1. 8 to 10 characters, including uppercase letters, lowercase letters, digits, and
32 other symbols, or
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2. Any three to four 4 letter words, of which there are 3996 in the English
language

(Answer 5.1.3 in Appendix)
4)Howmany 4 letter English words must be allowed for a password to be at least
as secure as the stronger password above?

For the following questions ( 5.1.5 through 5.1.8 ) instead of being dealt 5
cards from a standard deck you are dealt 7 cards.

⋆ 5) How many distinct flushes are possible? (Answer 5.1.5 in Appendix)
6) How many distinct straights are possible?

⋆ 7)Howmanyways could you get three of one rank and four of another? (Answer
5.1.7 in Appendix)
8)Howmanyways could you get three pairs with the remaining card of a different
rank than all the others?

⋆ 9)Use the Inclusion/Exclusion Principle to determine howmany positive integers
less than or equal to 50 are a multiple of 2, 3, or 5. (Answer 5.1.9 in Appendix)
10) Determine a formula for the value |A ∪ B ∪ C ∪ D| using the sizes of the
respective sets and their intersections. Justify your answer.
11)Using Inclusion/Exclusion, find the number of possible passwords composed
of lowercase letters, uppercase letters, digits, and the five special characters in
{., !@&} with the following restrictions.

1. The length must be 8 − 10 characters
2. It must contain at least one lowercase letter, at least one uppercase letter,

at least one digit, and at least one special character
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5.2. Dice and role-playing games

Next we move onto dice; in particular, role-playing applications. In a number
of role-playing game scenarios a player is tasked with rolling a handful of dice
which they hope will sum to a high enough value to pass the test, defeat the
monster, or survive the potentially fatal blow. These dice often have varying
shapes. Assuming the reader knows nothing about dice (singular die), we will
proceed with the following assumptions:

• an n-faced die is called a “ dn ”
• A dn has the same probability of landing on any one face as another
• Each face of a dn has a unique number, and these are 1, 2,… , n

So, for example, a d4 has 4 faces labeled 1, 2, 3, 4, and each face has the
same probability of turning up on a single roll. As a side note, most polyhedral
dice that a player encounters are regular polyhedra, which means that the faces
are identical regular polygons with equal angles and side lengths, and the same
number of faces meet at each vertex. There is no regular polyhedron with exactly
3, 7, or 13 sides, but a curious collector can easily purchase a d3 , d7 , and a
d13 . These dice don’t necessarily have regular polygonal faces, but they are still
fair in the sense that the probabilities are the same for each face. And, of course,
a d2 is simply a coin.
Math Diversion: Discrete probability
The probability of a discrete event A occurring is equal to the ratio of the
number of ways that it can occur times their weights to the number of total
possible outcomes times their weights. Since we are considering unweighted
dice (all faces have the same probability of coming up on a single roll) this
means that we need only worry about unweighted probabilities:

P (A) = outcomes that match A
all possible outcomes

Note that a probability cannot ever be less than zero (we are only count-
ing non-negative quantities) not greater than one (the number of events that
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5. Non-combinatorial games

match A is never greater than the number of possible outcomes). For exam-
ple, what is the probability that a roll of a d12 results in an odd value greater
than 4?

A:.Therearefouroutcomesthatmatchthiscriterion:5,7,9,11.Since
therearetwelvetotalfacesthatoccurwithequalprobability,weget
P(odd>4)=

4
12=

1
3.

Events are independent if the occurence of one does not have any effect
on the occurrence of another. Otherwise the events are dependent. Dice
rolling tends to fall into the former category since each time a die is rolled
the probabilities are the same no matter what has occurred up to that point.
Cards, for example, are often dependent since the probability of being dealt
a Queen is different whether or not you already have one in your hand.

We can combine discrete probabilities in a number of ways. While a com-
plete address of probability is outside the scope of this text, it’s worth noting
the basic AND and OR operations on events. The probability of independent
events A and B both occurring is

P (A ∩ B) = P (A) ⋅ P (B)

while the probability of A or B is
P (A ∪ B) = P (A) + P (B)

Now consider that you have a very generous friend willing to gamble with
you using a d6 in the following way.

• If it lands on a value greater than 4 then she pays you $5
• If it lands on 4 then she pays you $1
• Otherwise, you pay her $2
While a few plays of this game could result in very unexpected outcomes,

we will consider what happens if you play the game with her many, many
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5.2. Dice and role-playing games

times. This way the empirical outcomes will very likely be close to the theo-
retical outcomes. In probability theory this is called the Law of Large Num-
bers.

On a single roll your expected winnings (also called the expectation) equals
the sum of each outcome multiplied by the winnings in that case. In general,

Exp = P (a1)W (a1) + P (a2)W (a2) +⋯ + P (an)W (an)

where {a1, a2,… , an} is the set of possible outcomes, andW (A) represents
your winnings under outcome A. Note that the expectation is not what you
expect to win in a single roll of the dice, but instead what you expect to win
on average each roll over many plays of the game.

In your game, your expectation is P (> 4)$5 + P (4)$1 + P (< 4)(−$2) =
1
3
$5+ 1

6
$1− 1

2
$2, which is about $0.83. Therefore, if you play this game with

your friend 1000 times then you can expect to come away with about $83.
If your friend wants to change the rules to be more fair (and she’s your

friend so you oblige) by raising the amount you pay on a roll of 1, 2, or 3,
then what should you change it to?

A:.WewantExp=
1
3$5+

1
6$1−

1
2$x=0.Solvingforxyieldsapprox-

imately$3.67.After1000playsofthegameyoubothexpecttocome
awaywith$0andabetterrelationship.

In some role-playing games a player has a choice of which item to use in a given
scenario. Let’s assume that your character walks into a shop with a broadsword
under her cloak. Your character is not very good at lying but is wearing anAmulet
of Coercion which helps her out. She also has, well, a broadsword and shoulders
wide enough to barely fit through the door of the shop, so she’s quite intimidating.
You need to roll at least 12 on an attempt to either bluff or intimidate. With the
amulet your bluff, “It’s just a large, oddly shaped wallet,” gives you a d8 , 3 d4
, and a +2 modifier. To intimidate you roll 3 d6 . To determine which is the
better option (at least mathematically), we will calculate the expectation of each
die roll.

The expectation on a single d4 is P (1)1+P (2)2+P (3)3+P (4)4. Since each
probability is ( 1

4
) this equals 1

4
(1 + 2 + 3 + 4) or 2.5, just the mean of the values
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on the faces. In general the expectation from a single dn is

P (1)1 + P (2)2 +⋯ + P (n)n = 1
n

n
∑

i=1
i

If you’ve taken Calculus then you will recall that∑n
i=1 i =

n(n+1)
2

, so we get that

Exp(dn) = n(n + 1)
2n

= n + 1
2

Therefore, we see that Exp(d4) = 2.5, Exp(d6) = 3.5, Exp(d8) = 4.5, etc.
So, in our scenario, your expected rolls are:

Exp(bluff) = 4.5 + 3(2.5) + 2 = 14
Exp(intimidate) = 3(3.5) = 10.5

Your expected outcome is much better with the bluff, especially with your
amulet. Which is good, because there just happened to be a heavily-armed garri-
son just outside the door.
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6. Game Properties

Now that we have learned about impartial and partisan games, and the values
that these games can achieve, it’s time to delve into some interesting properties
of games. John Conway, when conceiving of the concept of a game as a new kind
of number, established that they should act like numbers as much as possible. So,
as we have seen, any two games that are rational numbers can be added together
like rational numbers, adhere to <,>,= like rational numbers, etc. But because
the set of all games is a superset of the set of dyadic rationals, containing new
objects like nimbers, infinitesimals, and switches, there are new properties and
new operations that can be enacted on them. This chapter addresses some of
those.

As usual, unless noted otherwise, assume that every gamewe see in this chapter
is short.

6.1. Birthdays

You say it’s your birthday
It’s my birthday too, yeah
They say it’s your birthday

We’re gonna have a good time

- The Beatles, “Birthday”

Throughout Chapter 3, we saw that game values are defined recursively. That
is, the game 1 is defined as { 0 |

|

}, the game 2 as { 1 |
|

}

=
{

{

0 |
|

}

|

|

|

}

, ↑=
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{

0 |
|

∗
}, etc. We can see that the definition of every game is, directly or indi-

rectly, dependent on the game 0. So, if we imagine beginning with only the game
0, and then using it to generate all other games, then the act of creating games is
also very much like a game itself.

We define the birthday of a game in the followingway. The game 0 has birthday
0. Any game we can define using only 0, i.e. 1 ={ 0 |

|

}, −1 ={ |

|

0
}, and

∗=
{

0 |
|

0
}, have birthday 1. Any game that we can define using only 0, 1,−1,

and ∗, e.g. ↑=
{

0 |
|

∗
}, { 1 |

|

−1
}, 2 =

{

1 |
|

}, etc. has birthday 2, and so
on. Formally, we can write this using a recurrence relation like we introduced in
Section 0.2.

b(G) =

{

0 if G = 0
max{b(H)}H an option of G + 1 otherwise

Note that the birthday of a game is precisely the depth of its game tree. We
sometimes say that a game is born on its birthday. So 0 is born on day 0; 1,−1,
and ∗ are born on day 1, and so on. Below is a table of the number of games with
a given birthday. Try to list some more games with birthday 2.
We can find an upper bound for the number of games with birthday n without

too much work. On day 1we only have 0 and ∅ to work with. So if we choose one
of these for L’s option and one for R’s, then we get an upper bound of 2 ⋅ 2 = 4
possible games born by the end of day 1. Since one of those games, 0, was born
earlier, there are at most three games born on day 1. Now that we have four games
the math gets a bit trickier. Remember that L can have more than one option,
as can R. So we need to consider games like { 0, ∗ |

|

1
}. Since each player’s

options can be any subset of the games born on or before day 1, we need to count
all subsets of the set of games born so far.

Math Diversion: Counting sets
We have already worked quite a bit with sets, which we introduced in Section
0.1. Let S = {a, b, c} and recall that there are eight subsets of S:

∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, and S itself.
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6.1. Birthdays

We can do this exhaustively, but it gets exhausting if we want to consider
larger sets. Let’s instead count the number of subsets using some simple
arithmetic.

Consider a group of four friends at a party. They’re dressed in their nicest
outfits and want to remember the occasion, so they decide to take pictures.
But they don’t just want a single group picture. Instead, each person wants
a picture by themselves, with each other person, with each possible group of
three, and with all four of them. Finally, because the sunset is so nice, they
want a photo it without anyone in the shot. The number of photos they want
to take is precisely the number of subsets of a set of four elements. We can
count the number of photos by considering each person and whether or not
they are in the shot, one photo at a time. For each photo, the first person is
either in the shot or not, the second person is either in the shot or not, etc.
So, the number of photos that need to be taken is equal to 2 ⋅ 2 ⋅ 2 ⋅ 2 = 16.
In general, if a finite set has n-many elements, then there are 2n distinct

subsets. How many subsets are there of a set of eight elements?

A:.Thereare28=256distinctsubsets.

The number of games born by the end of day 2 is at most equal to the number of
subsets of the set of games born by the end of day 1 squared, i.e. (24)2 = 256. We
can then subtract the four games we’ve already seen and get an upper bound of
252 for the number of games born on day 2. But this is a pretty steep overestimate.
Note that we’ve included { −1 |

|

1
} and { ∗ | ∗ }, which are both equal to 0. In

fact, there are only 18 new games born on day 2! Here is a table with the number
of games born on each given day.

day 0 1 2 3
games born today 1 3 18 1452

You can see how quickly the number increases. There are clearly an infinite
number of games. But how infinite?

So far we have dealt primarily with finite sets. The number of elements in a
finite set S is its cardinality, written |S|, and given two finite sets it’s very easy to
tell whether or not their cardinalities are equal. |{a, b, c}| = |{x, y, z}| because

217



6. Game Properties

both are equal to 3. But we’ve been touching on infinite sets, as well. Remember
ℕ = {0, 1, 2,…}? We often refer to the set of natural numbers as the counting
numbers. What is |ℕ|?
When we want to consider cardinalities of infinite sets, it’s best to simply com-

pare them to other sets we already know. Let’s let E = {0, 2, 4, 6,…} be the set
of all even natural numbers. It may seem at first glance that |E| < |ℕ|. After all,
E only contains half of the elements from ℕ. But E is also infinite. Let’s look
closer at these two sets and try to compare them one element at a time.

One way to turnℕ intoE is to eliminate every odd number. In that sense we are
striking half of the terms from ℕ. But another method is to take every element in
ℕ and double it. In this case we haven’t eliminated anything. In fact, the function
f ∶ ℕ → E defined by f (n) = 2n is a bijective function or simply a bijection.

Math Diversion: Injective, surjective, and bijective functions

A function is a relationship from one set A to another set B, written f ∶
A → B, where every element a in the domain A has exactly one associated
element f (a) in the codomain B. The smallest subset of B that contains all
elements of the form f (a) for some a ∈ A is called the range of f , sometimes
written f (A) ⊆ B.

If f (A) = B then we say that f is onto B, and we call f a surjective
function. For example, let A = {a, b, c, d}, B = {x, y, z} and consider the
function f ∶ A→ B by the following table. A a b c d

f (A) y x z x
This function f is surjective since every element of B has a pre-image in

A.
Another example is the function g ∶ ℝ → ℝ by g(x) = 3x − 1. To show

this function is surjective, let y be any element of the codomain ℝ and find
an x in the domainℝ such that g(x) = y. In this case we can work backwards
from y = 3x − 1 to find x = 1

3
(y + 1). Since g(x) = y, and 1

3
(y + 1) ∈ ℝ for

any y ∈ ℝ, the function g is surjective.
As a final example, consider ℎ ∶ ℝ → ℝ by ℎ(x) = x3 − x. Working

backwards in this case is very difficult. Instead, notice that ℎ is a cubic poly-
nomial, so we know that its range is all real numbers.
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Is the function f (x) = ln(x) + 3 surjective from (0,∞) to ℝ?

A:.Ify=ln(x)+3,then(y−3)=ln(x)andthusx=e(y−3).Since
e(y−3)∈(0,∞)forally∈ℝ,fissurjective.

An injective or one-to-one function never sends the two different elements
of a domain to the same element in the codomain. If A = {a, b, c, d}, B =

{w, x, y, z}, and j ∶ A→ B by A a b c d
j(A) y x z w

then j is injective because no two values inA go to the same element ofB.
Actually, this function is not only injective but also surjective. Any function
that is both injective and surjective is called bijective.

As another example, consider the function k ∶ ℕ → ℕ by k(n) = 3n + 1.
To show this function is injective, consider two elements in A that have the
same image, and demonstrate that they are equal.

If n1, n2 ∈ A and k(n1) = k(n2) then 3n1 + 1 = 3n2 + 1. We can simplify
this equation to 3n1 = 3n2 and finally to n1 = n2. Since k(n1) = k(n2) onlywhen n1 = n2 we know that k is injective.
As an example of a function that is not injective, consider m ∶ ℝ → ℝ by

m(x) = x2 + 2x − 3. If x1, x2 ∈ ℝ and m(x1) = m(x2) then x21 + 2x1 − 3 =
x22 + 2x2 − 3. We could try to simplify this equation but we won’t get far.
Notice that (2)2+2(2)−3 = 5 = (−4)2+2(−4)−3. Since 2 and −4 are both
in the domain ℝ and m(2) = m(−4) the function m is not injective.

Can you find a bijection between ℤ and ℕ?
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A:.Weneedsomethingbothone-to-oneandonto.Considerthefollow-
ingfunction.

g(n)=

⎧

⎪

⎨

⎪

⎩

0ifn=0
2nifn>0
−2n−1ifn<0

Wecanseethatnotwointegersprojecttothesamenaturalnumbersog
isinjective.Foranyy∈ℕ,ifyisevenandpositivethenitspre-image
ispositive,ifit’soddthenitspre-imageisnegative,andify=0thenits
pre-imageis0.Sogissurjective.Thereforegisbijective.

If there is a bijection between two sets then we say they have the same cardi-
nality. So |ℕ| = |E|! But that may not be surprising. After all, they’re both
infinite sets. In fact, Georg Cantor [3] showed that some infinite sets are actually
larger than others using what has become known as his diagonal argument.
We say that any set with the same cardinality as ℕ, or less, is countable. So

E, {a, b, c}, ∅, and ℕ are all countable sets. But is every set countable? Consider
the set ℝ[0,1] of all real numbers between 0 and 1. We will demonstrate that this
set is not countable using a proof by contradiction.
Claim 6.1.1. The set ℝ[0,1] is incountable.

Proof. First, let’s assume that ℝ[0,1] is countable. So we are assuming that there
is a bijection between ℕ and ℝ[0,1]. That means that we assume there is a way to
list the elements of ℝ[0,1] side-by-side with the elements of ℕ in such a way that
every element of each set appears exactly once. We can visualize this as a table
like so:

ℕ ℝ[0,1]
0 0.x0,0x0,1x0,2x0,3x0,4x0,5…
1 0.x1,0x1,1x1,2x1,3x1,4x1,5…
2 0.x2,0x2,1x2,2x2,3x2,4x2,5…
3 0.x3,0x3,1x3,2x3,3x3,4x3,5…
4 0.x4,0x0,1x0,2x0,3x0,4x0,5…
⋮ ⋮
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where xa,b is the bth digit of the number associated with the natural number a.
We don’t know what any of these digits are, but by our assumption they exist and
every real number is on this list somewhere. Let’s now consider the following
real number x = 0.x0x1x2x3… where we define the digits by

xk =

{

5 if xk,k = 7
7 otherwise

In other words, we consider the boxed digits below and make certain that x
does not match them.

ℕ ℝ[0,1]
0 0. x0,0 x0,1x0,2x0,3x0,4x0,5…
1 0.x1,0 x1,1 x1,2x1,3x1,4x1,5…
2 0.x2,0x2,1 x2,2 x2,3x2,4x2,5…
3 0.x3,0x3,1x3,2 x3,3 x3,4x3,5…
4 0.x4,0x4,1x4,2x4,3 x4,4 x4,5…
⋮ ⋮

This number x, which is a real number, differs from every number on the list in
at least one digit. So it’s not on the list, and our assumption, that every real number
is on the list, is wrong. Hence, |ℝ| ≠ |ℕ| andℝ is not countable. Therefore, there
are infinite sets that are larger than others.

Since we are now convinced that there are not only different finite cardinalities
but also different infinite cardinalities, we can start to name them. We say that the
cardinality of the naturals |ℕ| = ℵ0. In general we let ℵk represent the kth infinitecardinality. So you may be expecting that |ℝ| = ℵ1, but this is not necessarily thecase! It’s actually an open question whether or not there is some set S such that
|ℕ| < |S| < |ℝ|, so instead we say that the cardinality of the continuum |ℝ| = c.
It is also not true that every cardinality can be labeled with ℵk for some k ∈ ℕ,
since there are far more cardinalities than there are natural numbers. However,
the question “What is the cardinality of the set of cardinalities?” is an interesting
one, and after looking into Cantor’s Theorem and the concept of a proper class,
the interested reader will learn that the question as stated is not even valid.
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The natural question is now which sets are countable? We know that E is and
that ℝ is not. What about the rationals ℚ? Surely they must be bigger than ℕ.

As we’ve seen, if we can find a bijection between a set S and ℕ, or some
ordering ofS that includes every element exactly once, thenS is countable. First,
consider the following orderings of ℤ and ℤ+:

ℕ 0 1 2 3 4 5 …
ℤ 0 1 −1 2 −2 3 …
ℤ+ 1 2 3 4 5 6 …

You should be able to convince yourself that all elements of ℤ+ and ℤ appear
exactly once in the list. We will use these lists to create an ordering, or counting,
of ℚ. Let the first rational be 0

1
, i.e. the first term in one list divided by the first

term in the other. Then let the next two terms be 0
2
and 1

1
, the first term in ℤ

divided by the second term in ℤ+, and the second term in ℤ divided by the first
term inℤ+. Don’t worry about reducing fractions just yet. Now let the next terms
be 0

3
, 1
2
, −1
1
. At each step we add a new numerator and a new denominator, slowly

working our way through every possible pair from ℤ×ℤ+. We get the following
list.

ℕ 0 1 2 3 4 …
ℚ 0∕1 0∕2 1∕1 0∕3 1∕2 …

We have crossed out terms that already appear on the list. We can remove these
and shift everything up by one.

ℕ 0 1 2 3 4 …
ℚ 0∕1 1∕1 1∕2 − 1∕1 1∕3 …

simplified 0 1 1∕2 −1 1∕3 …

Here we have a counting of the elements of ℚ. You can convince yourself
that every rational number appears once and only once in this list, and hence
|ℚ| = ℵ0 and the rationals are countable. In fact, using this method, we can show
that any countable collection of countable sets still only contains a countable
set of elements. What does this mean for games? Well, we can order all short
combinatorial games by their birthdays and use the resulting list to demonstrate
that the set of all short games is countable.
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ℕ 0 1 2 3 4 …
Games 0 1 −1 ∗ ↑ …

This brings us to our first transfinite game. Let’s suppose thatR has no options
and L has as options every natural number. We end up with the game

! =
{

0, 1, 2,… |

|

}

.

We can see that ! > 0 and, in fact, ! > G for any short game G. This actually
opens up the floodgates to the games

! + 1 = { ! | }
! + 2 =

{

! + 1 |
|

}

⋮

and even the infinitesimal
1∕! =

{

0
|

|

|

|

1
2
, 1
4
, 1
8
,…

}

.

Note that if r ∈ ℚ+, then 1∕! < r, and it can be demonstrated that every
infinitesimal s > 0 with a finite birthday is less than 1∕!.
Theorem 6.1.2. 1∕! is an infinitesimal and is at least as large as every infinitesi-
mal with a finite birthday.

Proof. We will prove both of these claims directly.
First, let r ∈ ℚ+ be any positive rational. There is some dyadic rational 1∕2n < r.

Consider the difference between 1∕! and r.
g = 1∕2n − 1∕!

= 1∕2n +
{

−1
2
,−1
4
,−1
8
,…

|

|

|

|

0
}

Note that Lmoving first can go to 1∕2n− 1∕2n+1 > 0. Since L can win by going first,
we know that g ∉ . If Rmoves first, they can move to 1∕2n ∈  or to 1∕2n−1 + 1∕!,

223



6. Game Properties

to which L can respond by moving to 1∕2n−1 − 1∕2n > 0. Hence, 1∕! ≤ 1∕2n < r for
any positive rational r, and 1∕! is an infinitesimal.

Next, consider any positive infinitesimal game � born on day n, and let ℎ be
the following game.

ℎ = 1∕! − �

Moving first, L can move to −� < 0, or to 1∕!− �L, where �L is a left option of
� born before day n. To the latter, R can move to 1∕2k − �L > 0 for some natural
number k, or to 1∕! − (�L)R. Note that L can continue to play on � as long as
R does, and since, by Theorem 3.5.2, this game will eventually end with 0 and
� > 0, eventually R must play on 1∕! before L resulting in a positive number.
Therefore, ℎ > 0 and 1∕! > � for any infinitesimal � with a finite birthday.

Now that we have the concept of birthdays we can present an interesting result
that may help us to determine whether or not G < H for a pair of games. First,
we note that we can always find a positive game as small as we want.
Theorem 6.1.3. If G > 0 then 0 < ⧾n < G, where n is the birthday of G.

Proof. LetH be the gameG−⧾n = G+⧿n = G+
{

{

n |
|

0
}

|

|

|

0
}

. L can move
to G+{

n |
|

0
}

> 0. If Rmoves first, they can only move to GR+⧿n or to G. In
the former case, L can respond toGR+

{

n |
|

0
}. SinceGR is a right option ofG,

it is in  or  and its birthday is less than n, hence n > GR. Whether R moves
from here to (GR)R+

{

n |
|

0
} or to GR, L can win. Therefore, 0 < ⧾n < G.

Theorem 6.1.3 leads us to the following Corollary.
Corollary 6.1.4. If H < G and X = −H − ⧾n, where n is the birthday of the
game G −H , then G +X > 0 andH +X < 0

Proof. The game G + X = G − H − ⧾n, which by Theorem 6.1.3 is positive.
The gameH +X = H −H −⧾n = ⧿n < 0.
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There are many combinatorial games topics we did not include in this book1.
We’ll mention these here and explain them briefly. Much of what we’ll mention
here is covered in other CGT texts:

• Winning Ways for your Mathematical Plays, a four-volume text by Elwyn
Berlekamp, John H. Conway, and Richard Guy. This is the classic combi-
natorial games text, which includes many examples and illustrations.

• Lessons in Play, a text byMichael Albert, Richard Nowakowski, and David
Wolfe. It is used in many advanced college-level CGT courses.

• Combinatorial Game Theory, a text by Aaron Siegel. This book covers
many advanced topics in CGT.

Advanced topics that we don’t cover here include (but are not limited to):
• Loopy games. There are rulesets where a position may be repeated in the

course of play, meaning a game state may be a follower of itself.
• Reversible options. This allows us to improve analysis by replacing an

option,H ofG byH’s grandchild-option when certain conditions are met.
• Octal games, a family of impartial rulesets involving heaps of stones. E.g.

NIM and KAYLES.
• Game Transformations. Transforming game positions from one ruleset to

another can be a way to see winning strategies that weren’t evident before.
It can also be used to prove that winnability is a computationally-intractible
problem.

1Some we may include in future versions.
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7. CGT Beyond this Book

• Temperature strategies. The study of temperature and how to use it to pick
a move goes much deeper than we covered here.

• Misère play. In this text we only covered normal play, which is when the
player who makes the last play wins. Under Misère play, the last player to
move loses instead.

• Scoring Games. In another alternative to normal play, players earn points
in Scoring Games, then, when no more moves can be made, the player
with the higher score wins. (Usually instead of having two separate scores,
we just have a running total of the difference. L is winning if the score is
positive; R if the score is negative.)

• Atomic Weights. The atomic weight of a game amounts to the number of
moves one player could pass on a game, if played in isolation, and still make
the last move. The game ↑=

{

0 |
|

∗
}

=
{

0
|

|

|

|

{

0 ||
|

{

0 |
|

0
}

}

}

has
atomic weight 1 since L can immediately win, or wait until after R’s first
move and then win. Similarly, ⇑∗=

{

0 ||
|

{

0 |
|

↑
}

}

has atomic weight 2.
• Alternative sums: The addition we’ve used throughout this text is the dis-

junctive sum. There are many other ways to add games that can also arise
naturally. (E.g. ordinal sums in HACKENBUSH.)

Although what are considered “publishable” results in CGT are certainly sub-
jective, current research topics can include the following. (Naturally, these need
to be original results.)

• Creating a new interesting ruleset, and proving interesting properties about
it. (These properties really do need to be interesting! A new ruleset on its
own is often not enough.) These kinds of results are common, and that’s
okay!

• Increasing the known range of a ruleset, R, by finding values that were
previously unknown to be inR. (For example, it is unknown whether there
is a DOMINEERING position equal to ∗4 .)
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• Solving a well-known ruleset. (E.g. finding a trick to quickly determine the
winnability or value.) This could either be a statement about all positions,
or just the starting positions.

• Finding novel connections between some rulesets.
• Proving that positions in a ruleset are computationally intractible. (E.g. it

is unknown whether CLOBBER is PSPACE-hard.)
• Anything novel about misère play. There’s lots of research on this, espe-

cially in impartial games.
• And, of course, answering open problems posed in published combinatorial

games papers.
There are certainly other avenues for results that we haven’t included here.
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A. Ruleset List

Here are the Rulesets used throughout this text, in alphabetical order.

AVOID TRUE
AVOID TRUE is a game played with a list of boolean variables
(x1, x2,… , xn) and a CNF, f , using those variables that has no negations.
All variables begin the game set to False. A turn consists of picking one
variable that is still False and flipping it to True, such that the whole for-
mula still evaluates to False. (A variable cannot be chosen if flipping that
would cause the formula to become True.)
To simplify positions, we will remove clauses that are already satisfied and
list extra variables afterwards.

(x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4) = F
(x1 ∨ x2) ∧ (x2 ∨ T ∨ x4) = F
(x1 ∨ x2) ∧ (x2 ∨ T ∨ T ) = F

The first move is to flip x3, making the whole second clause true. The
second flips x4, which leaves no further moves.
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A. Ruleset List

BRUSSELS SPROUTS
BRUSSELS SPROUTS is an impartial game played on a planar graph. Each
vertex has four “arms” where edges can be attached. Each arm can only
connect to one edge. A turn consists of creating a new vertex (with the
four arms) then adding edges from two opposite arms of that new vertex
to connect to previously-created arms. These new edges must maintain
the planarity of the graph, which means that when drawn on paper, they
may not cross any edges nor vertices. The chosen arms must not yet have
attached edges. If there is no way to draw a new vertex with such arms,
then there are no legal moves.
For simplicity of actual play, instead of drawing circles for the nodes, it
is common to draw a “plus sign” to indicate the four arms, or just draw a
short line segment across a line to signify the new node on that edge.

→ →

The first player adds the node at the top and draws the two edges. The
second player, then connects that same node with the one on the right.

The new node that’s drawn can’t connect on the left-hand-side.
Fact: The value of a BRUSSELS SPROUTS position is always either ∗ or 0.
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CHOMP!
CHOMP (sometimes stylized Chomp!) is an impartial game played on a
grid with squares labeled with integer coordinates from [1, n] × [1, m]. On
their turn a player chooses a remaining square with label (x, y) and removes
it along with all remaining squares of the form (x1, y1) such that x1 ≥ x
and y1 ≥ y. The player who removes square (1, 1) loses.

→ →

The first play is at (4, 2), removing (4, 2), (4, 3), and (4, 4). The next play
is at (2, 3), removing that position along with all pieces above and to the

right of this piece.

CLOBBER
CLOBBER is a partisan game in which players take turns moving a piece
of their color in any of the four orthogonal directions onto a piece of their
opponent’s color, removing the other’s piece from play.

→ →

L moves right to take the red piece, then R moves up to win.
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COL
COL is a game played on a graph. L uses the color Blue, whileR uses Red.
Each turn, a player chooses an uncolored vertex, v, that is not adjacent to
any vertices in their color, then paints v with their color.

→ →

R makes the first move, choosing the only vertex they can to color red.
After that, L also has only one move, so they color that vertex blue.

DIRECTED GEOGRAPHY
DIRECTED GEOGRAPHY is an impartial game on an undirected graph, and
a token on one of the vertices. A turn consists of moving the token along
an outgoing edge to a new vertex, then removing the prior vertex from
the graph. DIRECTED GEOGRAPHY was first known as GENEREALIZED
GEOGRAPHY, as it is a generalization of GEOGRAPHY to graphs. It is also
known as DIRECTED VERTEX GEOGRAPHY and often colloquially just as
GEOGRAPHY.

→ →

The token begins on the middle vertex. The first player moves it to the
right, deleting the middle vertex they came from. The second player then

uses the edge heading back to the left side.
Fact: This was one of the earliest games shown to be PSPACE-complete.
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DOMINIM
DOMINIM is a NIM variant in which players are presented with a collec-
tion of dominoes. Each domino has a number of pips on top and a possi-
bly different number on the bottom. Players make NIM moves on the set
of domino tops, and once a domino is played it is flipped, so the bottom
becomes the new top. The game ends when all tops contain zero pips.

→ → →

The first player removes both pips from the lefthand domino then flips it.
The second player responds by removing one from the same domino and
flips it again, making in unplayable. The next player is forced to remove
the only pip in the righthand domino, leaving the following player a

single heap of four to remove and win.
Fact: If top > bottom in a single domino game then its Grundy value is
equal to bottom + 1.

FIBONACCI NIM
FIBONACCI NIM is played identically to NIM with two additional restric-
tions: The first player may not remove all the sticks, and no player may
remove more than twice the number of sticks removed on the previous
turn.

→ → → 0

The first player removes 2 sticks. Since the second player can remove at
most 2 ⋅ 2 = 4, they do so. The first player can remove the remaining

3 < 2 ⋅ 4.
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GEOGRAPHY
GEOGRAPHY is an impartial ruleset in which players take turns naming
towns, cities, or countries under the restrictions that no place may be
named twice, and the next place named must begin with the last letter of
the previously name place. “House” rules differ, sometimes allowing only
cities or only countries to be named.
AntwerP → PlymoutH → HalifaX→ XanadU
Beginning with Antwerp, subsequently named cities begin with the

ending letter of the previous play.
Fact: If you’re stuck on an X then consider Chinese cities.

HEX
HEX is a partisan placement game played on a parallelogram-shaped board
of hexagonal spaces. The four edges of the board are colored, blue on the
left and right, and red on the top and bottom. Players take turns adding
a single piece of their color, and the first to complete an unbroken line
of monochromatic pieces of their color connecting their two sides of the
board wins.

→ →

Left places a piece, then Right blocks for the win.
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KAYLES
KAYLES is a bowling game created by Henry Dudeney in 1908[], derived
from the lawn game Skittles. Each turn, players bowl a ball towards a row
of bowling pins that may include some gaps. The ball can either knock
over (remove) a single pin or two adjacent pins. Removed pins leave gaps
in the row. The game ends when all pins have been removed.

→ →

The first bowl takes out the second and third pins, the second bowl
removes only the fifth pin.

235
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KONANE
KONANE is a traditional Hawaiian game that is similar in many ways to
Checkers or Draughts. Black and white stones begin on a grid in an alter-
nating fashion, with two adjacent stones removed:

Each turn, the current player uses one of their stones to jump over an oppo-
nent’s orthogonally-adjacent piece to the empty spot on the other side. If
there is another opponent piece (and empty space behind) along the same
line, the jumping can continue if the player wishes.
GENERALIZED KONANE is a variant where starting stones don’t need to
alternate colors. In other words, two stones of the same color can be or-
thogonally adjacent.

→ →

R makes the first move by jumping their lower piece up. This sets up a
big move for L, who makes a triple jump.
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NIM
NIM is an ancient game that has been played in different forms across dif-
ferent cultures. In 1901, Charles Bouton coined the name “Nim” and de-
scribed the complete theory[2].
The game play consists of removing objects (classically tokens, sticks, or
pebbles) from piles (“heaps” or “Nim heaps”). Each turn, a player removes
objects (at least one) from exactly one heap. The game ends when all heaps
are empty.

→ →

First move takes the entire last heap; the second takes one stick from the
second.

NODE KAYLES
NODE KAYLES is a game played on an undirected graph. On the current
player’s turn, they choose a vertex. Then, the graph is altered by removing
that vertex and all adjacent vertices. When there are no more vertices, then
there are no more moves.

c

ba
d

e f
→

c

d
e f

→
d f

The first move chooses a, the second chooses c.
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SUBTRACTION
SUBTRACTION is a game played on a heap of n tokens, with a specified
set of positive integers (ℤ+) known as the subtraction set. Each turn, the
current player chooses a number k from the set such that k ≤ n, and then
k tokens are removed from the heap. When n is lower than all elements
of the set, there are no more moves and the current player loses. We will
describe each position using the fancy number script as before (e.g. 66 )
or by also including the subtraction set below if it’s not understood from
context (e.g. 66

{1,5,6}
).

99
{1,2,4}

→ 77 → 33 → 11→ 00
The first player takes two tokens to move to a heap of 7. The second

player then takes four tokens to move to a heap of size 3. Taking three is
not in the subtraction set, so the first player instead takes two, and the

second player responds by taking the final token to win.

TOPPLINGDOMINOES
TOPPINGDOMINOES is a game played on rows of dominoes colored Red,
Blue, or Green. Each turn, the current player picks either a green domino
or domino of their color and a direction either left or right. (Either player
can choose any direction.) The chosen domino and all other dominoes in
the chosen direction are then “knocked down” and removed from play.

→ →

L makes the first move, knocking the fourth domino to the right. R
makes the second move, knocking the second domino to the left.
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UNDIRECTED EDGE GEOGRAPHY
UNDIRECTED EDGE GEOGRAPHY is played similarly to UNDIRECTED
VERTEX GEOGRAPHY, but with the modification that once an edge is
played, only that edge is removed from play. Vertices remain.

�

�



�

�
�

�

�
→

�

�



�
�

�

�
→

�

�



� �

�

The first player moves along edge � . The second player responds by
moving along edge �.

UNDIRECTED VERTEX GEOGRAPHY
UNDIRECTEDVERTEXGEOGRAPHY is an impartial game on an undirected
graph, wherein players take turns choosing a neighbor of the previously
chosen vertex, then deleting that previous vertex from the graph.

a

b

c

d e

f

→

b

c

d e

f

→

c

d e

f

Starting at vertex a, the first player moves to b and deletes a. The next
player then moves to e and deletes vertex b.
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WYTHOFF NIM
WYTHOFF NIM (alsoWythoff’s Game) is a two-heap NIM variant wherein
players may remove k > 0 sticks from either pile or both piles at the same
time.

→ → → 0

The first player removes two sticks from both heaps. The second player
then removes one to leave one in each. The first player responds by

removing the sticks from both heaps at once.
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B. Glossary
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Glossary

follower A follower of G is a position that can be reached after one or more
moves from G.. 6

impartial game tree A game tree for impartial games where edges from a po-
sition to its options are drawn as a fork extending downwards. All edges
are drawn in the four cardinal directions (they may turn at perpendicular
corners).. 4

option A position a player may move to.. 3
option notation The notation used to describe a partisan game by its options..

96
partisan game A combinatorial game ruleset where players may have different

options at some positions. (Note that this includes all impartial games as
well. To differentiate, it’s necessary to use the term strictly partisan, which
are those rulesets without impartial games.. 95
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C. Answers to Exercises

Here are the answers to starred exercises in the book.

Answer of exercise 0.1.0
Question:
S = {x ∈ ℕ | x > 5 and x < 10}. Rewrite S without using set-builder

notation.
⋆ Answer:

S = {6, 7, 8, 9}

Answer of exercise 0.1.1
Question:
S = {2k + 1 | k ∈ ℕ ∪ {0} and k ≤ 6}. Rewrite S without using set-builder

notation.
⋆ Answer:

S = {1, 3, 5, 7, 9, 11, 13}

Answer of exercise 0.1.2
Answer Not Provided

Answer of exercise 0.1.3
Answer Not Provided

Answer of exercise 0.1.4
Answer Not Provided
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C. Answers to Exercises

Answer of exercise 0.1.5
Answer Not Provided

Answer of exercise 0.1.6
Question:

Draw the first two levels of the impartial game tree from 33
{1,2,3}

. (Your diagram
should show the initial position and all the options from that position.)

⋆ Answer:

33
221100

Answer of exercise 0.1.7
Answer Not Provided

Answer of exercise 0.1.8
Question:

Draw the first two levels of the impartial game tree from 44
{1,2,3}

.(Your diagram
should show the initial position and all the options from that position.)

⋆ Answer:

44
332211

Answer of exercise 0.1.9
Answer Not Provided
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Answer of exercise 0.1.10

Question:
Draw the entire impartial game tree for 22

{1,2,3}
. Is there a winning move for the

first player? Justify your answer. (This is a continuation of 0.1.7 .)
⋆ Answer:

22
11
00

00

Yes, there is a winning move for the first player, because you can move to a pile
of 0.

Answer of exercise 0.1.11

Answer Not Provided

Answer of exercise 0.1.12

Question:
Draw the impartial game tree for 44

{1,2,3}
. Which of the two players (first or

second) has a winning strategy from the pile of 4? Justify your answer. (This is
a continuation of exercise 0.1.8.)

⋆ Answer:
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44
33

22
11
00

00
11
00

00
22
11
00

00
11
00

The second player has a winning strategy, because no matter what the first player
does, the second player can move to 0.

Answer of exercise 0.1.13
Answer Not Provided

Answer of exercise 0.1.14
Question:

What are all of the followers of 33
{1,3}

?
⋆ Answer:

We can solve this by drawing out the impartial game tree from 33
{1,3}

:

33
22
11
00

00
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The followers of 33 are 22 , 11 , and 00 .

Answer of exercise 0.1.15
Answer Not Provided

Answer of exercise 0.1.16
Answer Not Provided

Answer of exercise 0.1.17
Question:

If x ≡ 3 (mod 5) and y ≡ 1 (mod 5), then what is x + y (mod 5)?
⋆ Answer:

x + y ≡ 4 (mod 5)

Answer of exercise 0.1.18
Answer Not Provided

Answer of exercise 0.1.19
Question:

How do a natural number and its square compare under arithmetic (mod 2)?
i.e. are n and n2 always equivalent (mod 2), always non-equivalent (mod 2), or
sometimes equivalent and sometimes not?

⋆ Answer:
If n is even then n ≡ 0 (mod 2), and since the square of an even is also even

we get that n2 ≡ 0 (mod 2). Similarly, if n ≡ 1 (mod 2) then n2 ≡ 1 (mod 2).

Answer of exercise 0.1.20
Answer Not Provided

Answer of exercise 0.2.0
Question:

What is the outcome class at the root of this impartial game tree?
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Justify your answer by labeling the nodes of the tree.
⋆ Answer:



  

The overall outcome class is: 

Answer of exercise 0.2.1
Answer Not Provided

Answer of exercise 0.2.2
Question:

What is the outcome class at the root of this impartial game tree?

Justify your answer by labeling each node of the tree with its outcome class.
⋆ Answer:
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The overall outcome class is: 

Answer of exercise 0.2.3
Answer Not Provided

Answer of exercise 0.2.4
Answer Not Provided

Answer of exercise 0.2.5
Question:

Let G = 33
{1,2,3}

. What is the o(G)? Justify your answer by drawing the game
tree and labeling each node with its outcome class. (This is a continuation of
exercise 0.1.11.)

⋆ Answer:

33


22 

11 

00


00


11

00


00


Thus, o(G) = .

Answer of exercise 0.2.6
Answer Not Provided
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Answer of exercise 0.2.7
Question:

Find the outcome class of this tree:

Then add one new child to one of the leaves to flip the outcome class at the
root of the tree. (Yes, you need to show the work to derive the outcome class of
the new tree.)

⋆ Answer:
The outcome class of the tree is currently  :











However, if we add one new leaf to the bottom right-hand node, then the out-
come class becomes :
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Answer of exercise 0.2.8
Answer Not Provided

Answer of exercise 0.2.9
Question:

Verify that the max function in this chapter requires 6n+5 Python instructions
to run. Assume that the len function takes one step to complete.

⋆ Answer:

• Line 1 (maximum = numbers[0]) will be executed once. (1)
• Line 2: 1
• Line 3: The condition will be checked n + 1 times and len will be called

each time, so this contributes 2n + 2 towards the total.
• Line 4: This assignment happens n times.
• Line 5: n times. In the worst case, it is always true
• Line 6: n
• Line 7: n
• Line 8: After the loop, we will return exactly once, so this contributes only

1 step.

1 + 1 + 2n + 2 + n + n + n + n + 1 = 6n + 5.

Answer of exercise 0.2.10
Answer Not Provided

Answer of exercise 0.2.11
Answer Not Provided
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Answer of exercise 0.3.0

Question:
Use a trimmed game tree to find and show the outcome class of 66

{1,3,4}
. (This

is a continuation of exercise 0.1.9.) What is the smallest tree you can draw that
proves your result?

⋆ Answer:
The position is in .

66


55
⋮

33
⋮

22

11

00


Answer of exercise 0.3.1

Answer Not Provided

Answer of exercise 0.3.2

Question:
Use a trimmed game tree to find and show the outcome class of 55

{1,3}
.

⋆ Answer:
The position is in .
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55


22
⋮

44

33 

22
⋮

00


11

00

Answer of exercise 0.3.3

Answer Not Provided

Answer of exercise 0.3.4

Question:
Use a trimmed game tree to find and show the outcome class of 99

{2,3}
.

⋆ Answer:
The position is in .
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99


77
⋮

66

44 

22
⋮

11


33

11
⋮

00


Answer of exercise 0.3.5

Answer Not Provided

Answer of exercise 0.3.6

Answer Not Provided

Answer of exercise 0.3.7

Question:
Use a trimmed game tree to find and show the outcome class of 99

{2,4,5}
.

⋆ Answer:
The position is in .
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 99
55
⋮

44
⋮ 77

 55
33
⋮

11


00


 33
11


 22
00


Answer of exercise 0.3.8

Answer Not Provided

Answer of exercise 0.4.0

Question:

Use a (partial) game tree to find the outcome class of .

⋆ Answer:
is in .
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⋮




0


Answer of exercise 0.4.1

Answer Not Provided

Answer of exercise 0.4.2

Answer Not Provided

Answer of exercise 0.4.3

Question:
Find the outcome class of 33

{1,2}
+ . If possible, find and use the outcome

classes for the two components and use that to justify your answer. If that fails,
draw the game tree for the sum.

⋆ Answer:
First we find o( 33

{1,2}
):
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 33

22 

00


 11
00


Next we find o( ):



⋮

0


Since o( 33
{1,2}

) ∈  and o( ) ∈ , the sum is in .

Answer of exercise 0.4.4
Answer Not Provided

Answer of exercise 0.4.5
Question:

Find the outcome class of 33
{1,2,3}

+ . If possible, find and use the
outcome classes for the two components and use that to justify your answer. If
that fails, draw the game tree for the sum.

⋆ Answer:
First we find o( 33

{1,2,3}
):
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 33
22
⋮

11
⋮

00


Next we find o( ):





0


33
{1,2,3}

∈ and ∈  , so the sum is in .

Answer of exercise 0.4.6
Answer Not Provided

Answer of exercise 0.4.7
Answer Not Provided

Answer of exercise 0.4.8
Answer Not Provided

Answer of exercise 0.4.9
Answer Not Provided
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Answer of exercise 0.4.10
Question:

Prove that if games G andH are both in  , then the game G +H is in  .
⋆ Answer:

Any move on either game moves that game into an  position, which can be
countered back to an  position. This can be continued until no moves remain in
either game.

Answer of exercise 0.4.11
Answer Not Provided

Answer of exercise 0.5.0
Question:

Find and prove the outcome class of , a KAYLES
row of 11 pins.

⋆ Answer:



TT

So, is an -position.

Answer of exercise 0.5.1
Answer Not Provided

Answer of exercise 0.5.2
Question:

261



C. Answers to Exercises

Find and prove the outcome class of .
⋆ Answer:



TT

So, is an  -position.

Answer of exercise 0.5.3
Answer Not Provided

Answer of exercise 0.5.4
Question:

Find and prove the outcome class of + 33
{1,3}

.
⋆ Answer:

 + 33

TT

So, + 33
{1,3}

is an  -position.
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Answer of exercise 0.5.5
Answer Not Provided

Answer of exercise 0.5.6
Question:

Find and prove the outcome class of .
⋆ Answer:





TT



TT



TT



TT



TT



TT

So, is a -position.

Answer of exercise 0.5.7
Answer Not Provided

Answer of exercise 0.6.0
Answer Not Provided

Answer of exercise 0.6.1
Answer Not Provided
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Answer of exercise 0.6.2

Answer Not Provided

Answer of exercise 0.6.3

Answer Not Provided

Answer of exercise 0.6.4

Answer Not Provided

Answer of exercise 0.6.5

Answer Not Provided

Answer of exercise 0.6.6

Answer Not Provided

Answer of exercise 0.6.7

Answer Not Provided

Answer of exercise 0.6.8

Question:
Conjecture a formula for∑n

j=1 2
j and prove your claim using induction.

⋆ Answer:
First, note that plugging in values for n yields 2, 6, 14, 30, 62,…, which all

appear to be two less than powers of two. So we claim that∑n
j=1 2

j = 2n+1 − 2.

Proof. We proceed by induction on n. For the base case, consider that∑1
j=1 2

j =
2 = 21+1 − 2.
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Now assume that∑n
j=1 2

j = 2n+1 − 2. The sum
n+1
∑

j=1
2j = 2n+1 +

1
∑

j=1
2j

= 2n+1 + 2n+1 − 2
= 2 ⋅ 2n+1 − 2
= 2n+2 − 2 = 2n+1+1 − 2

Therefore the claim is true.

Answer of exercise 0.6.9
Answer Not Provided

Answer of exercise 0.6.10
Question:

Draw the full game tree for .
⋆ Answer:

0

Answer of exercise 0.6.11
Answer Not Provided

265



C. Answers to Exercises

Answer of exercise 0.6.12
Question:

What is mex ({0, 1, 2, 3, 4})?
⋆ Answer:

mex
(

{0, 1, 2, 3, 4}
)

= 5

Answer of exercise 0.6.13
Answer Not Provided

Answer of exercise 0.6.14
Question:

What is mex ({0, 1, 2, 4})?
⋆ Answer:

mex
(

{0, 1, 2, 4}
)

= 3

Answer of exercise 0.6.15
Answer Not Provided

Answer of exercise 0.6.16
Answer Not Provided

Answer of exercise 0.6.17
Answer Not Provided

Answer of exercise 0.6.18
Question:

If S = {0, 1, 2, 3, 4}, and T = {5, 6, 7, 8, 9} what is mex (S ∪ T )?
⋆ Answer:

mex
(

S ∪ T
)

= mex
(

{0, 1, 2, 3, 4} ∪ {5, 6, 7, 8, 9}
)

= mex
(

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
)

= 10
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Answer of exercise 0.6.19
Answer Not Provided

Answer of exercise 0.6.20
Answer Not Provided

Answer of exercise 0.6.21
Question:

If S = {0, 1, 2, 5, 6, 7}, and T = {0, 1, 4, 5, 8, 9} what is mex (S ∩ T )?
⋆ Answer:

mex
(

S ∩ T
)

= mex
(

{0, 1, 2, 5, 6, 7} ∩ {0, 1, 4, 5, 8, 9}
)

= mex
(

{0, 1, 5}
)

= 2

Answer of exercise 0.6.22
Answer Not Provided

Answer of exercise 0.6.23
Answer Not Provided

Answer of exercise 0.6.24
Question:

If S = {0, 2, 4, 6, 8}, what is mex (SC
)?

⋆ Answer:

mex
(

SC
)

= mex
(

{0, 2, 4, 6, 8}C
)

= mex
(

{1, 3, 5, 7, 9} ∪ {k | k ≥ 10}
)

= 0
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Answer of exercise 0.6.25
Answer Not Provided

Answer of exercise 0.6.26
Answer Not Provided

Answer of exercise 0.6.27
Answer Not Provided

Answer of exercise 0.6.28
Question:

If S = {2k | k ∈ ℕ}, what is mex (S)?
⋆ Answer:

S = {0, 2, 4,…}, so mex (S) = 1.

Answer of exercise 0.6.29
Answer Not Provided

Answer of exercise 0.6.30
Answer Not Provided

Answer of exercise 0.6.31
Question:

What is mex (ℕ ⧵ {56}
)?

⋆ Answer:
The set contains every element of ℕ except for 56, so the mex is 56.

Answer of exercise 0.6.32
Answer Not Provided

Answer of exercise 0.6.33
Question:

Let S = {5k − 1 | k ∈ ℕ}. What is mex (ℕ ⧵ S
)?
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⋆ Answer:
The set contains all natural numbers that are one less than a multiple of 5. That

includes 4, 9, 14, etc. That means that the lowest natural not in S is 4, so the mex
is 4.

Answer of exercise 0.6.34
Answer Not Provided

Answer of exercise 0.6.35
Question:

Let S = {2k | k ∈ ℕ} and T = {5k | k ∈ ℕ}. What is mex ((S ⧵ T )C
)?

⋆ Answer:
The elements of S ⧵ T below 10 are: {2, 4, 6.8}, so the complement of that

includes 0 and 1, but not 2. Thus, the mex is 2.

Answer of exercise 0.6.36
Answer Not Provided

Answer of exercise 0.6.37
Question:

Simplify ∗
{

∗, ∗3, ∗5, ∗7, ∗9
} to a single nimber value.

⋆ Answer:
The game is equal to 0 because mex (1, 3, 5, 7, 9) = 0.

Answer of exercise 0.6.38
Answer Not Provided

Answer of exercise 0.6.39
Question:

Simplify ∗
{

0, ∗, 0, 0, ∗
} to a single nimber value.

⋆ Answer:
The game is equal to ∗2 because mex (0, 1, 0, 0, 1) = mex (0, 1) = 2.
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Answer of exercise 0.6.40
Answer Not Provided

Answer of exercise 0.6.41
Question:
G = ∗

{

0, ∗2, ∗4, ∗
{

0, ∗2, ∗4
}

}

includes another impartial game’s options
written out. Simplify this to a single nimber value.

⋆ Answer:

G = ∗
{

0, ∗ 2, ∗ 4, ∗
{

0, ∗2, ∗4
}

}

= ∗{ 0, ∗2, ∗4, ∗
}

=∗3

Answer of exercise 0.6.42
Answer Not Provided

Answer of exercise 0.6.43
Answer Not Provided

Answer of exercise 0.6.44
Question:

What is the value at the root of this impartial game tree?

Justify your answer by labeling each node of the tree with its value. (This is a
follow-up to exercise 0.2.0.)

⋆ Answer:
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∗1

∗0∗0∗0 ∗0∗0

The overall outcome class is: 
Answer of exercise 0.6.45

Answer Not Provided
Answer of exercise 0.6.46

Answer Not Provided
Answer of exercise 0.6.47

Question:
Let G be the position in SUBTRACTION-{1, 2, 3} with a pile of 3. What is the

nimber of G? Justify your answer by drawing the game tree and labeling each
node with its nimber. (This is a continuation of exercise 0.2.5.)

⋆ Answer:

3∗3

1∗10
∗0

2 ∗2

0
∗0

0
∗0

1 ∗1

0
∗0

Thus, o(G) = .
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Answer of exercise 0.6.48
Answer Not Provided

Answer of exercise 0.6.49
Question:

Using the table for kk
{1,2}

as a model, create a similar table to find the nimber of
55

{1,2,3}
.

⋆ Answer:
k 0 1 2 3 4 5
kk

{1,2,3}
0 ∗ ∗2 ∗3 0 ∗

Answer of exercise 0.6.50
Answer Not Provided

Answer of exercise 0.6.51
Answer Not Provided

Answer of exercise 0.6.52
Question:

Do the same as exercises 0.6.50 and 0.6.51 , except with the subtraction set
{1, 3} instead.

⋆ Answer:
k 0 1 2 3 4 5 6 7 8 9 10
kk
{1,3}

0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0

The pattern seems to be: kk
{1,3}

=

{

0, k ≡ 0 mod 2
∗, k ≡ 1 mod 2

=∗ (k mod 2)
Proof that the pattern works:
Claim: kk

{1,3}
=∗ (k mod 2)

Proof. Proof by strong induction:
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• Base Cases: k = 0, 1, and 2
– k = 0: This is a terminal position, so the value is 0. ✓
– k = 1: 11

{1,3}
= ∗

{ 00
{1,3}

}

= ∗
{

0
}

=∗. ✓

– k = 2: 22
{1,3}

= ∗
{ 11

{1,3}

}

= ∗{ ∗ } = 0. ✓

• Recursive Case: Let i ≥ 3. Assume that ∀k ∈ {0, 1,… , i − 1}: kk
{1,3}

=∗ (k mod 2)
Consider the case where k = i. Since i ≥ 3, both moves are valid on ii

{1,3}
.

Thus,

ii
{1,3}

= ∗
{ i-3i-3

{1,3}
, i-1i-1
{1,3}

}

= ∗{ ∗ ((i − 3) mod 2), ∗ ((i − 1) mod 2) }
= ∗{ ∗ ((i − 1) mod 2), ∗ ((i − 1) mod 2) }
= ∗{ ∗ ((i − 1) mod 2) }
= {0, ∗} ⧵ {∗ ((i − 2) mod 2)}

The mex of that set is then (i − 2) mod 2 = i mod 2.
Thus, ∗{ ∗ ((i − 1) mod 2) } =∗ (i mod 2). ✓

Answer of exercise 0.6.53
Answer Not Provided

Answer of exercise 0.6.54
Question:
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The version of the mex function given in the chapter is elegant partly because
it is so short. Unfortunately, O(n2) is pretty inefficient. We can drastically speed
it up to O(n log(n)) by writing a bit more code. Rewrite mex to run in O(n log(n))
time. (Hint: Python’s built-in sort method for lists takes O(n log(n)) time.)

⋆ Answer:
def mex(integers):

”’Returns the mex (minimum excluded value) of integers.”’
integers.sort() #lowest to highest
num = 0
for integer in integers:

if integer < num:
pass

elif integer == num:
num += 1

else:
return num

return num

Answer of exercise 0.6.55
Answer Not Provided

Answer of exercise 0.6.56
Question:

In the text, we showed two different games, G1 and G2 that were both equal to
∗ 4. We showed that G1 +G2 ∈  , even though they weren’t identical positions.
Show that this works for any two equal (but not necessarily identical) positions.
Prove that if G = H , then G +H ∈  .

⋆ Answer:
To show that G + H ∈  , we will show a winning strategy for the second

player on G +H . If G andH have no options (so the sum is 0 + 0 = 0) and the
sum is already in  . If either has options, then after the second player’s turn, the
game still has a new position I + J where I = J .

Since G = H , by our definition of equality (for impartial games) it means that
there is a nimber, k, such that G =∗ k = H . Thus, neither G nor H has an
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option equal to ∗ k. Let’s assume the first player chooses to move on G to a new
position, I with value ∗ j. There are two cases: j > k and j < k.

Case 1, j > k: Then I has an option with value k. The second player can move
to that option and the sum is still ∗ k+ ∗ k as needed.
Case 2, j < k: Then H has an option with value j. The second player can

move to that option and the sum is still ∗ j+ ∗ j as needed.
If the first player plays onH instead ofG, thenwe can use the same strategy, but

with the roles ofG andH switched. In these cases of proofs, it is common to say
“Without loss of generality, assume . . . ” before the assumption we’re making.
The meaning of this is that we’re not making any special assumptions and the
same proof works for both cases (but with the names swapped around).

Since the second player can always follow their strategy, the games will con-
tinue until they have no options and the second player wins. Thus, G +H ∈ P .

Answer of exercise 0.6.57
Answer Not Provided

Answer of exercise 0.7.0
Question:

What is the nimber value ∗3+ ∗2?
⋆ Answer:

∗3+ ∗2 =∗(3⊕ 2)
=∗(112 ⊕ 102)
=∗(012)
=∗1
=∗

Answer of exercise 0.7.1
Answer Not Provided
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Answer of exercise 0.7.2
Question:

What is the nimber value ∗4+ ∗2?
⋆ Answer:

∗4+ ∗2 =∗(4⊕ 2)
=∗(1002 ⊕ 102)
=∗(1102)
=∗6

Answer of exercise 0.7.3
Answer Not Provided

Answer of exercise 0.7.4
Question:

What is the nimber value ∗5+ ∗11?
⋆ Answer:

∗5+ ∗11 =∗(5⊕ 11)
=∗(1012 ⊕ 10112)
=∗(01012 ⊕ 10112)
=∗(11102)
=∗14

Answer of exercise 0.7.5
Answer Not Provided

Answer of exercise 0.7.6
Question:
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What is the nimber value ∗20+ ∗31?
⋆ Answer:

∗20+ ∗31 =∗(20⊕ 31)
=∗(101002 ⊕ 111112)
=∗(010112)
=∗(8 + 2 + 1)
=∗11

Answer of exercise 0.7.7
Answer Not Provided

Answer of exercise 0.7.8
Answer Not Provided

Answer of exercise 0.7.9
Question:

What is the value of ∗ + ∗5+ ∗6?
⋆ Answer:

∗ + ∗5+ ∗6 =∗(1⊕ 5⊕ 6)
=∗(012 ⊕ 1012 ⊕ 1102)
=∗(0102)
=∗2

Answer of exercise 0.7.10
Answer Not Provided
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Answer of exercise 0.7.11
Question:

What is the value of ∗10+ ∗20+ ∗25?
⋆ Answer:

∗10+ ∗20+ ∗25 =∗(10⊕ 20⊕ 25)
=∗(010102 ⊕ 101002 ⊕ 110012)
=∗(001112)
=∗(4 + 2 + 1)
=∗7

Answer of exercise 0.7.12
Answer Not Provided

Answer of exercise 0.7.13
Question:

What is the value of
7
∑

i=1
∗ i =∗ + ∗2+ ∗3+ ∗4+ ∗5+ ∗6+ ∗7?

⋆ Answer:

7
∑

i=1
∗ i =∗ + ∗2+ ∗3+ ∗4+ ∗5+ ∗6+ ∗7

=∗ +(∗2+ ∗3) + (∗4+ ∗5) + (∗6+ ∗7)
=∗ +(∗) + (∗) + (∗)
= 4× ∗
= 0
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Answer of exercise 0.7.14
Answer Not Provided

Answer of exercise 0.7.15
Question:

Using what you learned in exercises 0.7.13 and 0.7.14 , what is the value of
4k+1
∑

i=1
∗ i =∗ + ∗2+ ∗3 +⋯+ ∗(4k)+ ∗(4k + 1)?

⋆ Answer:

4k+1
∑

i=1
∗ i =∗ + ∗2+ ∗3 +⋯+ ∗(4k)+ ∗(4k + 1)

=∗ +(∗2+ ∗3) +⋯ + (∗(4k)+ ∗(4k + 1))

=∗ +

4k
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(∗2+ ∗3) +⋯ + (∗(4k)+ ∗(4k + 1))

=∗ +

2k
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(∗) +⋯ + (∗)

= (2k + 1)× ∗
=∗

Answer of exercise 0.7.16
Answer Not Provided

Answer of exercise 0.7.17
Answer Not Provided

Answer of exercise 0.7.18
Question:

Find an option of the game
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i.e. (3, 7, 9), that is in  .
⋆ Answer:

The game

i.e. (3, 7, 4), is in  .

Answer of exercise 0.7.19
Answer Not Provided

Answer of exercise 0.7.20
Question:

Find an option of the game

i.e. (6, 2, 5), that is in  .
⋆ Answer:

The game

i.e. (6, 2, 4), is in  .

Answer of exercise 0.7.21
Answer Not Provided

Answer of exercise 0.7.22
Answer Not Provided
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Answer of exercise 0.7.23
Question:

Find the nimber values of , , and .
⋆ Answer:

• has a single move to zero, so =∗.

• = ∗
{ 0, }

= ∗
{

0, ∗
}

=∗ 2

• = ∗
{

, ,
}

= ∗
{

∗ 2, ∗, ∗ + ∗
}

=∗ 3

Answer of exercise 0.7.24
Question:

Find the nimber value of . You will likely need to use your answer to
exercise 0.7.23 .

⋆ Answer:

= ∗
{

, , ,
}

= ∗{ ∗ 3, ∗ 2, ∗ + ∗ 2, ∗ + ∗
}

= ∗{ ∗ 3, ∗ 2, ∗ 3, 0
}

=∗

Answer of exercise 0.7.25
Answer Not Provided
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Answer of exercise 0.7.26
Answer Not Provided

Answer of exercise 0.7.27
Answer Not Provided

Answer of exercise 0.7.28
Answer Not Provided

Answer of exercise 0.8.0
Question:

Complete the following truth table for x1 ∧ (x2 ∨ x3).
x1 x2 x3 x2 ∨ x3 x1 ∧ (x2 ∨ x3)
F F F F F
F F T
F T F
F T T
T F F
T F T
T T F
T T T

⋆ Answer:
x1 x2 x3 x2 ∨ x3 x1 ∧ (x2 ∨ x3)
F F F F F
F F T T F
F T F T F
F T T T F
T F F F F
T F T T T
T T F T T
T T T T T
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Answer of exercise 0.8.1
Answer Not Provided

Answer of exercise 0.8.2
Question:

Howmany rows would we need in a truth table for a formula with four boolean
variables?

⋆ Answer:
Twice as many rows as three-variables, so 16 rows.

Answer of exercise 0.8.3
Answer Not Provided

Answer of exercise 0.8.4
Question:

Consider AVOID TRUE played on the formula (x1 ∨ x2) ∧ x3. Assume the
players are planning to play on variables in this order: x1, x2, then x3. Evaluatethe formula after each (attempted) move (and show your work). What is the first
of these moves that can’t be made because it will be illegal?

⋆ Answer:
• x1 ← T: (T ∨ F) ∧ F = (T) ∧ F = F

• x2 ← T: (T ∨ T) ∧ F = (T) ∧ F = F

• x3 ← T: (T ∨ T) ∧ T = (T) ∧ T = T

The third move of flipping x3 is illegal.

Answer of exercise 0.8.5
Answer Not Provided

Answer of exercise 0.8.6
Answer Not Provided
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Answer of exercise 0.8.7

Question:
Consider AVOID TRUE played on the formula (x1∨x2)∧ (x2∨x3∨x4). Which

variables can the first player not choose?
⋆ Answer:

x2 cannot be chosen because it is in all of the clauses.

Answer of exercise 0.8.8

Question:
Consider AVOID TRUE played on the formula (x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4). What

is the outcome class of this position? (This is a continuation of exercise 0.8.7 .)
⋆ Answer:

Choosing x1 results in the position (x2 ∨ x3 ∨ x4). Since there is only one
clause remaining and no extra false variables, there are no further moves and this
position is in  . That means the initial position is in .

Answer of exercise 0.8.9

Answer Not Provided

Answer of exercise 0.8.10

Question:
Use a game tree to determine the outcome class of NODE KAYLES on a path

with four vertices.

a b c d

Hint: combine moves that result in equivalent graphs into one option instead of
separate.

⋆ Answer:
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a b c d

 

∅

Answer of exercise 0.8.11
Answer Not Provided

Answer of exercise 0.8.12
Question:

Find the outcome class and winning strategy for CHOMP on any rectangular
board of size 2 × n, n ≥ 2.

⋆ Answer:
We know from the strategy stealing argument that this board is in . The first

player can remove square (2, n), leaving a board that is one square shorter in row
2 than in row 1. No matter what the second player does, the board can be returned
to this state, until the other player is left with the single square (1, 1).

Answer of exercise 0.8.13
Answer Not Provided

Answer of exercise 0.8.14
Question:

Determine the game value of the CHOMP positions 2 × 2, 2 × 3, and 2 × 4.
⋆ Answer:

When n = 2 we get ∗2 , when n = 3 we get ∗4 , and when n = 4 we get ∗5 .
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Answer of exercise 0.8.15
Question:

Play 2 × n CHOMP with someone else for a few different values of n and win
every time.

⋆ Answer:
It’s actually hard to not let on what the winning move is, especially if the other

person asks to go first after learning the method. You may need to make some
non-optimal moves the first couple rounds to throw them off!

Answer of exercise 0.8.16
Question:

Find all single-domino DOMINIM positions in  .
⋆ Answer:

First, any domino with 0 on top and any number of pips on the bottom, e.g.
, is in  . Also, any domino in which the top and bottom have the same number
of pips, e.g. , , etc. as this can be played as Tweedledum-Tweedledee.
Because of this, any domino in which the top has fewer pips than the bottom is
in  , since every option is to a domino with a greater top than bottom, and this
domino has as an option at least one of the previously noted -positions.

Answer of exercise 0.8.17
Answer Not Provided

Answer of exercise 0.9.0
Answer Not Provided

Answer of exercise 0.9.1
Question:

Find a closed formula for the sequence
−7,−2, 3, 8, 13, 18,…
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⋆ Answer:
The sequence is Δ1-constant so it is arithmetic. an = −7 + 5n.

Answer of exercise 0.9.2
Answer Not Provided

Answer of exercise 0.9.3
Question:

Find a closed formula for the sequence
1, 0, 3, 10, 21, 36, 55,…

⋆ Answer:
This sequence is Δ2-constant so has a closed formula of the form an = An2 +

Bn + C . Solving for A,B, and C yields an = 2n2 − 7n + 6.

Answer of exercise 0.9.4
Answer Not Provided

Answer of exercise 0.9.5
Question:

Find a closed formula for the sequence

4, 2, 1, 1
2
, 1
4
, 1
8
,…

⋆ Answer:
This is a geometric sequence with ratio r = 1

2
, so an = 4 ⋅ ( 12 )n

Answer of exercise 0.9.6
Answer Not Provided
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Answer of exercise 0.9.7
Question:

Find a closed formula for the recurrence relation

an =

⎧

⎪

⎨

⎪

⎩

2 if n = 0
3 if n = 1
2an−1 − an−2 otherwise

⋆ Answer:
This relation has characteristic equation x2 − 2x + 1 = 0, which simplifies to

(x − 1)2 = 0. Since it has one repeated root we let
an = A1(−1)n + A2n(−1)n

Plugging in the first two terms yields
2 = A1, 3 = −A1 − A2

so A1 = 2, A2 = −5, and hence
an = 2(−1)n − 5n(−1)n

Answer of exercise 0.9.8
Answer Not Provided

Answer of exercise 0.9.9
Answer Not Provided

Answer of exercise 0.9.10
Question:

List the first 8 terms in the Beatty sequence � .
⋆ Answer:

3, 6, 9, 12, 15, 18, 21, 25
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Answer of exercise 0.9.11
Answer Not Provided

Answer of exercise 0.9.12
Question:

Consider the Beatty sequence
√

3 = 1, 3, 5, 6, 8, 10, 12, 13,…

Find the first 5 terms of its complementary sequence s, and then determine the
appropriate value for s.

⋆ Answer:
s = 2, 4, 7, 9, 11,… with s =

√

3
√

3−1
.

Answer of exercise 0.9.13
Answer Not Provided

Answer of exercise 0.9.14
Answer Not Provided

Answer of exercise 0.9.15
Question:

Come up with a sequence such that successive terms have ratios that them-
selves have a fixed ratio between them (i.e. like a Δ2-constant sequence but with
ratios instead of differences).

⋆ Answer:
Consider 3, 3, 6, 24, 192, 3072, 98304….
The ratios are ⋅1, ⋅2, ⋅4, ⋅8, ⋅16, ⋅32,…, which themselves have a constant ration

of ⋅2.
Answer of exercise 1.1.0

Question:
Find the shortest possible game of UNDIRECTED VERTEX GEOGRAPHY in the

graph G above.
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⋆ Answer:
The shortest game on G has 5 vertices: begin at the apex and visit each vertex

in the outer pentagon.

Answer of exercise 1.1.1
Answer Not Provided

Answer of exercise 1.1.2
Answer Not Provided

Answer of exercise 1.1.3
Question:

Find the shortest possible game of UNDIRECTED VERTEX GEOGRAPHY in the
graph J above.

⋆ Answer:
The shortest game in J has one move: Along the pendant edge to the sole

vertex of degree one.

Answer of exercise 1.1.4
Answer Not Provided

Answer of exercise 1.1.5
Question:

Is the Petersen Graph hamiltonian? Is it traceable?
⋆ Answer:

The Petersen Graph is traceable (a path starting in the outer cycle can include
all vertices, then move to the inner cycle and include the remaining vertices). It
is not hamiltonian.
Proof. We proceed by contradiction. Assume the graph P is hamiltonian. Since
it has 10 vertices, there is a cycle C10 on 10 vertices, which also contains 10
edges. Since P has 15 edges there are 5 remaining edges joining vertices in the
10-cycle. There is no way for this to occur without creating at least one 3- or
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4-cycle, of which P has none. Therefore P does not contain a 10-cycle and is not
hamiltonian.
P is the smallest 3-regular graph without a bridge that is not hamiltonian.

Answer of exercise 1.1.6
Answer Not Provided

Answer of exercise 1.1.7
Answer Not Provided

Answer of exercise 1.1.8
Question:

Prove that every tree is bipartite.
⋆ Answer:

There are a number of ways to prove this. We will do so by finding a bipartition
of the vertices.
Proof. Let T be a tree and v any vertex in T . By definition, T is connected and
has no cycles. For every vertex u in T , place u into the set E if its distance from
v is even, and into set O if its distance from v is odd. This creates a bipartition of
T since no two vertices in the same set are connected, otherwise T would contain
a cycle. Therefore, T is bipartite.

Answer of exercise 1.1.9
Answer Not Provided

Answer of exercise 1.1.10
Question:

Let Cn be the cycle graph on n vertices (drawn as an n-gon). Find a formula
for the size L(Cn) of the largest possible matching in Cn, and then find a formula
for the size S(Cn) of the smallest possible maximal matching in Cn, in terms of
n.

⋆ Answer:
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If n is even thenL(Cn) = n
2
, and if n is odd thenL(Cn) = n−1

2
. SoL(Cn) = ⌊

n
2
⌋.

For the smallest maximal matching, we can choose every third edge. Thus,
S(Cn) = ⌈

n
3
⌉.

Answer of exercise 1.1.11
Answer Not Provided

Answer of exercise 1.2.0
Question:

What, if any, are the restrictions on n and m such that Km,n has (i) an euler
circuit and (ii) an euler tour?

⋆ Answer:
For an euler circuit, we need all even degrees. So m and n both much be even.

For an euler tour, we need exactly two odd degree vertices. The only way this is
possible in a complete bipartite graph is if one part is equal to 2 and the other is
odd.

Answer of exercise 1.2.1
Answer Not Provided

Answer of exercise 1.2.2
Answer Not Provided

Answer of exercise 1.3.0
Question:

Prove that if a digraph is strongly connected then it is also weakly connected.
⋆ Answer:
Proof. Let u, v be vertices in G. If G is strongly connected then there is, by
definition, a u − v path in G. Hence G is also weakly connected.

Answer of exercise 1.3.1
Answer Not Provided
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Answer of exercise 1.3.2
Answer Not Provided

Answer of exercise 1.3.3
Answer Not Provided

Answer of exercise 1.3.4
Question:

Consider the game of GEOGRAPHY played on Canadian Provinces and Ter-
ritories. Draw the corresponding DIRECTED GEOGRAPHY graph. Label your
vertices with the two-character shorthands. You don’t know what those are,
eh? Here’s the list: Alberta (AB), British Columbia (BC), Manitoba (MB), New
Brunswick (NB), Newfoundland and Labrador (NL), Nova Scota (NS), North-
west Territories (NT), Nunavut (NU), Ontario (ON), Prince Edward Island (PE),
Quebec (QC), Saskatchewan (SK), Yukon (YT).

⋆ Answer:
Here is one way to draw the graph:

MB BC

AB

NS NB NL NU NT

YT SK

ON PE QC

Answer of exercise 1.3.5
Answer Not Provided

Answer of exercise 1.3.6
Answer Not Provided
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Answer of exercise 1.3.7
Answer Not Provided

Answer of exercise 2.1.0
Question:

Rewrite ∗{ 0, ∗, ∗5, ∗7 } in option notation. Do not simplify to a single nimber
value.

⋆ Answer:
{

0, ∗, ∗5, ∗7 |
|

0, ∗, ∗5, ∗7
}

Answer of exercise 2.1.1
Answer Not Provided

Answer of exercise 2.1.2
Question:

Simplify { 0, ∗, ∗2, ∗4 |
|

0, ∗, ∗2, ∗4
} to a single nimber.

⋆ Answer:
∗3

Answer of exercise 2.1.3
Answer Not Provided

Answer of exercise 2.1.4
Question:

Can we simplify {

0, ∗, ∗2, ∗3 |
|

0, ∗, ∗2
} to a single nimber? If so, provide

that nimber value.
⋆ Answer:

No, { 0, ∗, ∗2, ∗3 |
|

0, ∗, ∗2
} does not simplify.

Answer of exercise 2.1.5
Question:

Can we simplify {

0, ∗, ∗2, ∗4 |
|

0, ∗, ∗2, ∗5, ∗6
} to a single nimber? If so,

provide that nimber value.
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⋆ Answer:
Yes, it simplifies to ∗3.

Answer of exercise 2.1.6
Answer Not Provided

Answer of exercise 2.1.7
Answer Not Provided

Answer of exercise 2.1.8
Question:

Can we simplify
{

∗, ∗2, ∗4, ∗5 ||
|

∗2, ∗4,
{

0 |
|

0
}

}

to a single nimber? If
so, provide that nimber value. Show your work.

⋆ Answer:
{

0 |
|

0
}

=∗, so the position simplifies to { ∗, ∗2, ∗4, ∗5 |
|

∗2, ∗4, ∗
}, which

equals 0.

Answer of exercise 2.1.9
Answer Not Provided

Answer of exercise 2.1.10
Answer Not Provided

Answer of exercise 2.1.11
Question:

What is the value of theKONANE position
? You can simplify your analysis by using the result from the section text.

⋆ Answer:

=
{

,
|

|

|

|

}

=
{

0, ∗ |
|

0
}
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Answer of exercise 2.1.12
Answer Not Provided

Answer of exercise 2.1.13
Question:

What is the value of the KONANE position ? You can simplify

your analysis by using the result from the section text.
⋆ Answer:

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

|

|

|

|

|

|

|

|

|

|

⎫

⎪

⎪

⎬

⎪

⎪

⎭

= { ∗ | ∗ }
= 0

Answer of exercise 2.1.14
Answer Not Provided

Answer of exercise 2.1.15
Answer Not Provided

Answer of exercise 2.2.0
Question:

Draw out the entire game tree for and label with outcome classes to
show that it is in. Make sure your edges are pointing in the right direction!

⋆ Answer:

296













Answer of exercise 2.2.1

Answer Not Provided

Answer of exercise 2.2.2

Answer Not Provided

Answer of exercise 2.2.3

Question:

Draw out the entire (partisan) game tree for . Label your tree with the
outcome classes. Do you get the correct outcome class that you would using an
impartial game tree?

⋆ Answer:
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0


0


0


0


0


0


Yes, we get the same outcome class ( ) that we would using an impartial tree.

Answer of exercise 2.2.4
Question:

Label all positions of the following game tree with their outcome classes.
a

c

ed

b

⋆ Answer:
a


c


e


d


b
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Answer of exercise 2.2.5

Answer Not Provided

Answer of exercise 2.2.6

Question:
Label all positions of the following game tree with their outcome classes.

a

ed

ji

c

ℎ

b

gf

⋆ Answer:
a


e


d


j


i


c


ℎ


b


g


f


Answer of exercise 2.2.7

Answer Not Provided

Answer of exercise 2.2.8

Question:
Label all positions of the following game tree with their outcome classes.
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a

d

i

m

ℎ

lk

c

g

j

b

fe

⋆ Answer:
a


d


i


m


ℎ


l


k


c


g


j


b


f


e


Answer of exercise 2.2.9
Answer Not Provided

Answer of exercise 2.2.10
Question:

What is the smallest game tree you can draw that has an outcome class of ?
Can you find a COL position that has that tree?

⋆ Answer:
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Here is a tree that has only two nodes (positions):
a


b


A simple COL position with this tree is: .

Answer of exercise 2.2.11
Question:

Translate this position into a game tree and determine the outcome class:
{

{

0 |
|

}

,
{

|

|

0
} |

|

|

|

{

{

|

|

0
}

|

|

|

{

|

|

0
}

}

}

.
⋆ Answer:

Here is the labelled game tree:
{

{

0 |
|

}

,
{

|

|

0
} |

|

|

|

{

{

|

|

0
}

|

|

|

{

|

|

0
}

}

}


{

{

|

|

0
}

|

|

|

{

|

|

0
}

}



{

|

|

0
}



0


{

|

|

0
}



0


{

|

|

0
}



0


{

0 |
|

}



0


The root outcome class is .

Answer of exercise 2.2.12
Answer Not Provided

Answer of exercise 2.2.13
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Answer Not Provided

Answer of exercise 2.2.14
Answer Not Provided

Answer of exercise 2.3.0
Answer Not Provided

Answer of exercise 2.3.1
Question:

What is the outcome class of + ?
⋆ Answer:

= 0. So o( + ) = o( ). = ∗
{

0, ∗
}

=∗ 2, so
o( = . The overall outcome class is also .

Answer of exercise 2.3.2
Answer Not Provided

Answer of exercise 2.3.3
Answer Not Provided

Answer of exercise 2.3.4
Question:

What is the outcome class of + ?
⋆ Answer:

is in  , by Tweedledum-Tweedledee. To find the sum’s
outcome class, we can draw out the game tree for :
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0


0


0


0


Since both L and R have winning moves (both to 0), ∈ , meaning that
the overall game is also in  .

Answer of exercise 2.3.5
Answer Not Provided

Answer of exercise 2.3.6
Answer Not Provided

Answer of exercise 2.3.7
Question:

What is the outcome class of + ?
⋆ Answer:

We start by finding the outcome class of each component using trimmed game
trees:
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0


0


Both components are in , so, by the table in the section, the sum must also
be in.

Answer of exercise 2.3.8

Answer Not Provided

Answer of exercise 2.3.9

Question:
What is the outcome class of + ?

⋆ Answer:
We start by finding the outcome class of each component using trimmed game

trees:



0


0
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Unfortunately, since the components are in  and  , we need to look at the
tree of the sum.

+


+


0


++


Thus the sum is in .

Answer of exercise 2.4.0
Question:

Find the COL position that is the (obvious) negation of
. (You don’t need to show work if you use the (super fast) trick given in the
chapter.)

⋆ Answer:
To negate a COL position, we only need to flip the color of each token. Thus,

the negation of is .

Answer of exercise 2.4.1
Answer Not Provided
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Answer of exercise 2.4.2
Question:

Find the TOPPLINGDOMINOES position that is the (obvious) negation of
. (You don’t need to show work if you use the (super fast) trick given in the chap-
ter.)

⋆ Answer:
To negate a TOPPLING DOMINOES position, we only need to flip the color of

each domino. Thus, the negation of is .

Answer of exercise 2.4.3
Answer Not Provided

Answer of exercise 2.4.4
Question:

Find theKONANE position that is the (obvious) negation of
. (Hint: KONANE positions can be negated just like the other rulesets we’ve
seen.)

⋆ Answer:
To negate a KONANE position, we just flip the color of each stone. Thus, the

negation of is
.

Answer of exercise 2.4.5
Answer Not Provided

Answer of exercise 2.4.6
Question:

Find the KAYLES position that is the (obvious) negation of .
(Hint: what is the negation of a position from an impartial ruleset?)

⋆ Answer:
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Every impartial game is it’s own negative, so the negation of is
simply .

Answer of exercise 2.4.7

Answer Not Provided

Answer of exercise 2.4.8

Question:
Simplify G = −

{

0, ∗2 |
|

0, ∗2
} by removing the minus sign and reducing

your answer as much as you know how.
⋆ Answer:

−
{

0, ∗2 |
|

0, ∗2
}

= − ∗ (2.1)
=∗ (2.2)

The last step occurs because every nimber is equal to its own negative.

Answer of exercise 2.4.9

Answer Not Provided

Answer of exercise 2.4.10

Question:
Is COL position equal to ? Prove your answer. (Yes, this is from

one of the team exercises.)
⋆ Answer:

First we find the outcome class of :
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They are not equal because = 0, but ∈ .

Answer of exercise 2.4.11

Question:
Is COL position equal to ? Prove your answer.

⋆ Answer:
Let’s check the outcome class of these two positions. First the COL position:











Next the KAYLES position:
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0

∗2

∗

0

0

∗

0

Both positions are in  , so they are equal. (Both are equal to 0.)

Answer of exercise 2.4.12
Question:

Is COL position equal to ? Prove your answer.
⋆ Answer:

=
{

|

|

|

}

=
{

0 |
|

0
}

=∗. = ∗
{

0
}

=∗, so these are equal!

Answer of exercise 2.4.13
Question:

Is COL position equal to ? Prove your answer.
⋆ Answer:

=
{

|

|

|

}

=
{

0 |
|

0
}

=∗.
However, = ∗

{

0,
}

= ∗
{

0, ∗
}

=∗2. ∗≠∗2, so these are not equal.

Answer of exercise 2.4.14
Question:
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From another of the team exercises, is equal to ? (Both
are COL.) Prove your answer.

⋆ Answer:
To determine whether these are equal, we will check whether +

∈  . The entire tree is a bit too big to analyze, so let’s (carefully) check
one of the left options first, + :


+

+


+


+


+


+


+


+


+


Since the sum position has a winning move for L, it is not in  , so the initial
positions are not equivalent.

Answer of exercise 2.4.15

Question:
Is COL position equal to ? Prove your answer.

⋆ Answer:
These two are equal! (If we check the outcome classes, we will see that they

are both in .) We can prove this by showing that the difference between them
is 0.
G = − = + , so we’ll analyze that sum.

Unfortunately, the tree is too big to comfortably fit here, so we’ll have to look
at the options individually. We just need to show that none of the options is a
winning move. That means we need to show that each of the six options has a
winning response from the other player.

First the left-options:
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• + . This has a right-option to: + . Let’s find the
outcome class of that.

+


+ 







The outcome class of that right-option is  , so that’s a winning response.
• . This has a right-option to , which is 0, a winning re-

sponse.

• + , which has a right-option of . Let’s find the out-
come class of that.



⋮
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The outcome class of this right-option is, so it’s a winning response.
None of those left options are a winning. Let’s look at the right-options now:
• + . This has a left-option to: . Let’s find the out-

come class of that.




The outcome class of that left-option is , so that’s a winning response.
• + . The COL position is zero, so the whole thing is equal

to . This has a left-option to 0, a winning response.

• + , which has a left-option of + . Let’s find the outcome
class of that.

+


+
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The outcome class of this left-option is  , so it’s a winning response.

None of the options of G are winning options, so G = 0. This means that the
original two positions are equal!

Answer of exercise 2.4.16
Answer Not Provided

Answer of exercise 2.4.17
Answer Not Provided

Answer of exercise 2.4.18
Answer Not Provided

Answer of exercise 2.4.19
Answer Not Provided

Answer of exercise 2.4.20
Answer Not Provided

Answer of exercise 2.4.21
Answer Not Provided

Answer of exercise 2.5.0
Question:

What is the inequality relationship between COL position and
? Prove your answer. (This is a follow-up of exercise 2.4.10.)

⋆ Answer:
First we’re going to find the outcome class of :
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So ∈  . We know already that = ∗
{

0, ∗
}

∈  , so they are
confused with each other:

∥

Answer of exercise 2.5.1
Question:

What is the inequality relationship between COL position and ?
Prove your answer. (This is a follow-up of exercise 2.4.13.)

⋆ Answer:
=
{

|

|

|

}

=
{

0 |
|

0
}

=∗.
However, = ∗

{

0,
}

= ∗
{

0, ∗
}

=∗ 2. Thus, since ∗ − ∗ 2 =∗ + ∗
2 =∗3 ∈ , these games are confused with each other.

∥ .

Answer of exercise 2.5.2
Question:

What is the inequality relationship betweenCOL positions and
? Prove your answer.

⋆ Answer:
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We can solve this by looking at the two outcome classes.




and





Since the first is in and the second is in , < .

Answer of exercise 2.5.3
Answer Not Provided

Answer of exercise 2.5.4
Answer Not Provided

Answer of exercise 2.5.5
Answer Not Provided

Answer of exercise 2.5.6
Answer Not Provided

Answer of exercise 2.5.7
Question:
G ∈  ∪ . Rewrite this as an equivalent comparison of G and 0.

⋆ Answer:
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G is either greater than zero or confused with zero, so G ∥> 0

Answer of exercise 2.5.8
Answer Not Provided

Answer of exercise 2.5.9
Answer Not Provided

Answer of exercise 2.5.10
Question:
G ≱ 0. Rewrite this as an equivalent comparison of G and 0 using a different

symbol.
⋆ Answer:

G <∥ 0

Answer of exercise 2.5.11
Answer Not Provided

Answer of exercise 2.5.12
Question:
G ≤ 0. Write the equivalent expression of G as an element of the union of

outcome classes.
⋆ Answer:

G ∈  ∪  .
Answer of exercise 2.5.13

Answer Not Provided
Answer of exercise 2.5.14

Answer Not Provided
Answer of exercise 2.5.15

Answer Not Provided
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Answer of exercise 2.5.16
Question:

Is the relation “has the same decimal part as” on the set of all reals reflexive,
symmetric, and/or transitive? Demonstrate.

⋆ Answer:
Reflexive: Every real number has the same decimal part as itself.
Symmetric: If x has the same decimal part as y then y has the same decimal

part as x.
Transitive: If x and y have the same decimal parts, and y and z have the same

decimal parts, then x and z have the same decimal parts.

Answer of exercise 2.5.17
Answer Not Provided

Answer of exercise 2.5.18
Question:

Is the relation “has the same remainder when divided by 3” on the set of all
naturals reflexive, symmetric, and/or transitive? Demonstrate.

⋆ Answer:
Reflexive: xRx is clear
Symmetric: If x∕3 has the same remainder as y∕3, then y∕3 has the same

remainder as x∕3.
Transitive: If x∕3 has the same remainder as y∕3, and y∕3 has the same re-

mainder as z∕3, then x∕3 and z∕3 have the same remainder.

Answer of exercise 2.5.19
Answer Not Provided

Answer of exercise 2.5.20
Answer Not Provided

Answer of exercise 2.6.0
Question:

317



C. Answers to Exercises

G =
{

{

|

|

0
}

, 0 ||
|

0
}

. Determine whether any ofG’s options are dominated.
If they are, remove them and simplifyG as much as you know how. Show all your
work.

⋆ Answer:
{

|

|

0
}

− 0 =
{

|

|

0
}

∈ , so {

|

|

0
}

< 0. That means that 0 dominates
{

|

|

0
} for L. Thus, G = {

0 |
|

0
}

=∗ .

Answer of exercise 2.6.1
Answer Not Provided

Answer of exercise 2.6.2
Question:
G =

{

{

0 |
|

}

, 0 ||
|

{

0 |
|

}

, 0
}

. Determine whether any of G’s options are
dominated. If they are, remove them and simplify G as much as you know how.
Show all your work.

⋆ Answer:
ForL, we compare the two options: { 0 |

|

}

−0 =
{

0 |
|

}

∈ , so { 0 |
|

}

> 0.
That means that 0 is dominated by { 0 |

|

} forL. ForR, we compare the options:
{

0 |
|

}

− 0 =
{

0 |
|

}

∈ . Thus, { |

|

0
} is dominated by 0 for R. Thus,

G =
{

{

0 |
|

}

|

|

|

0
}

.

Answer of exercise 2.6.3
Answer Not Provided

Answer of exercise 2.6.4
Question:
G =

{

∗, 0 |
|

0, ∗
}. Determine whether any of G’s options are dominated. If

they are, remove them and simplify G as much as you know how. Show all your
work.

⋆ Answer:
Since ∗∈  , ∗∥ 0. We can’t simplify either of these for either player. This

works out with what we already know, because G = ∗
{

0, ∗
}

=∗2.
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Answer of exercise 2.6.5
Answer Not Provided

Answer of exercise 2.6.6
Answer Not Provided

Answer of exercise 2.6.7
Answer Not Provided

Answer of exercise 3.1.0
Question:

Find the integer value of + + .
⋆ Answer:

+ + = 1 + 1 + 1 = 3

Answer of exercise 3.1.1
Answer Not Provided

Answer of exercise 3.1.2
Answer Not Provided

Answer of exercise 3.1.3
Answer Not Provided

Answer of exercise 3.1.4
Question:

What is the value of this KONANE position?
⋆ Answer:
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=

{

|

|

|

|

|

|

}

= 1

Answer of exercise 3.1.5
Answer Not Provided

Answer of exercise 3.1.6
Answer Not Provided

Answer of exercise 3.1.7
Question:

Find the integer value of + .
⋆ Answer:

+ = −2 + 2 = 0

Answer of exercise 3.1.8
Answer Not Provided

Answer of exercise 3.1.9
Question:

Simplify −1+ ∗3 + 4+ ∗ .
⋆ Answer:

−1+ ∗3 + 4+ ∗= −1 + 4+ ∗3+ ∗= −3+ ∗2

Answer of exercise 3.1.10
Answer Not Provided
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Answer of exercise 3.1.11
Question:

Find the value of + + + .
⋆ Answer:

+ + + = −2+ ∗2 + 3 + −2 = −1+ ∗2

Answer of exercise 3.1.12
Answer Not Provided

Answer of exercise 3.1.13
Question:

Rewrite { 1 |
|

4
}

− 3 as a single position and use basic arithmetic to simplify
its options.

⋆ Answer:
{

1 |
|

4
}

− 3 =
{

1 − 3 ||
|

4 − 3,
{

1 |
|

4
}

− 2
}

=
{

−2 ||
|

1,
{

1 |
|

4
}

− 2
}

Answer of exercise 3.1.14
Question:

Rewrite { 2 |
|

−2
}

−1 as a single position and use basic arithmetic to simplify
its options. Use this to determine the position’s outcome class.

⋆ Answer:
{

2 |
|

−2
}

− 1 =
{

2 − 1 ||
|

−2 − 1,
{

2 |
|

−2
}

− 0
}

=
{

1 ||
|

−3,
{

2 |
|

−2
}

}

Both players have a winning option, so this game is in .
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Answer of exercise 3.1.15
Answer Not Provided

Answer of exercise 3.1.16
Answer Not Provided

Answer of exercise 3.1.17
Answer Not Provided

Answer of exercise 3.1.18
Question:

Continue coding evaluate_position by implementing the bottom case: when
there are no right or left options.

⋆ Answer:
There are no options, so the value is simply zero:
elif len(left_options) == 0 and len(right_options) == 0:

return 0

Answer of exercise 3.1.19
Answer Not Provided

Answer of exercise 3.2.0
Question:

What is the single-number value of { 3 |
|

7
}?

⋆ Answer:
{

3 |
|

7
}

= 4, by the simplest number theorem.

Answer of exercise 3.2.1
Answer Not Provided

Answer of exercise 3.2.2
Question:

What is the single-number value of { 33 |
|

133
}?
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⋆ Answer:
{

33 |
|

133
}

= 34, by the simplest number theorem.

Answer of exercise 3.2.3
Answer Not Provided

Answer of exercise 3.2.4
Question:

List three dyadic rationals between 1
8
and 7

8
.

⋆ Answer:
There are many answers, but these are the three simplest dyadic rationals in

the interval: 1
4
, 1
2
, 3
4
.

Answer of exercise 3.2.5
Answer Not Provided

Answer of exercise 3.2.6
Question:

What is the single-number value of { 10 |
|

11
}?

⋆ Answer:
{

10 |
|

11
}

= 101
2
, by the simplest number theorem.

Answer of exercise 3.2.7
Answer Not Provided

Answer of exercise 3.2.8
Question:

What is the single-number value of
{

−51
2
|

|

|

−5
}

?
⋆ Answer:

{

−51
2
|

|

|

−5
}

= −51
4
, by the simplest number theorem.
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Answer of exercise 3.2.9
Answer Not Provided

Answer of exercise 3.2.10
Question:

What is the single-number value of
{

− 1
2
|

|

|

1
8

}

?
⋆ Answer:

{

− 1
2
|

|

|

1
8

}

= 0, by the simplest number theorem.

Answer of exercise 3.2.11
Answer Not Provided

Answer of exercise 3.2.12
Question:

Find an x and y such that { x |
|

y
}

= 95
8
.

⋆ Answer:
{

91
2
|

|

|

93
4

}

= 95
8
, by the simplest number theorem.

Answer of exercise 3.2.13
Answer Not Provided

Answer of exercise 3.2.14
Question:

Find an x and y such that { x |
|

y
}

= −511
16
.

⋆ Answer:
{

−53
4
|

|

|

−55
8

}

= −511
16
, by the simplest number theorem.

Answer of exercise 3.2.15
Answer Not Provided
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Answer of exercise 3.2.16
Question:

What is the single-number value of
{

{

2 |
|

6
}

|

|

|

{

6 |
|

10
}

}

?
⋆ Answer:

G =
{

{

2 |
|

6
}

|

|

|

{

6 |
|

10
}

}

=
{

3 |
|

7
}

= 4

Answer of exercise 3.2.17
Answer Not Provided

Answer of exercise 3.2.18
Question:

What is the simplified value of
{

{

0 |
|

1
}

|

|

|

{

1 |
|

2
}

}

?
⋆ Answer:

G =
{

{

0 |
|

1
}

|

|

|

{

1 |
|

2
}

}

=
{

1
2
|

|

|

|

1 + 1
2

}

= 1

Answer of exercise 3.2.19
Answer Not Provided

Answer of exercise 3.2.20
Question:

What is the simplified value of
{

{

−10 |
|

−1
}

|

|

|

{

0 |
|

4
}

}

?
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⋆ Answer:

G =
{

{

−10 |
|

−1
}

|

|

|

{

0 |
|

4
}

}

=
{

−2 |
|

1
}

= 0

Answer of exercise 3.2.21
Answer Not Provided

Answer of exercise 3.2.22
Question:

What is the simplified value of
{

{

{

3 |
|

5
}

|

|

|

{

11 |
|

13
}

}

|

|

|

|

{

{

20 |
|

33
}

|

|

|

{

42 |
|

2176
}

}

}

?
(The eight numbers used here were supplied by one of the authors’ children.)

⋆ Answer:

G =
{

{

{

3 |
|

5
}

|

|

|

{

11 |
|

13
}

}

|

|

|

|

{

{

20 |
|

33
}

|

|

|

{

42 |
|

2176
}

}

}

=
{

{

4 |
|

12
}

|

|

|

{

21 |
|

43
}

}

=
{

5 |
|

22
}

= 6

Answer of exercise 3.2.23
Answer Not Provided

Answer of exercise 3.2.24
Question:

Use a direct proof to show that { 0 |
|

1, 1+ ∗
} is equal to 1

2
.
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⋆ Answer:

{

0 |
|

1, 1+ ∗
}

− 1
2
=
{

0 |
|

1, 1+ ∗
}

+
{

−1 |
|

0
}

=
{

0 − 1
2
,
{

0 |
|

1, 1+ ∗
}

− 1
|

|

|

|

1 − 1
2
, 1+ ∗ −1

2
,
{

0 |
|

1, 1+ ∗
}

+ 0
}

=
{

−1
2
,
{

0 |
|

1, 1+ ∗
}

− 1
|

|

|

|

1
2
, 1
2
+ ∗,

{

0 |
|

1, 1+ ∗
}

}

Now we check that all options are losing:
• − 1

2
< 0, so it’s in.

• In { 0 |
|

1, 1+ ∗
}

− 1, R can move to 1 − 1 = 0.
• 1

2
> 0, so it’s in .

• 1
2
>∗, so 1

2
+ ∗> 0, and it’s in .

• In { 0 |
|

1, 1+ ∗
}, L can move to 0.

Thus, { 0 |
|

1, 1+ ∗
}

− 1
2
, so { 0 |

|

1, 1+ ∗
}

= 1
2
.

Answer of exercise 3.2.25
Answer Not Provided

Answer of exercise 3.2.26
Answer Not Provided

Answer of exercise 3.2.27
Question:

Find the number value of the sum of COL positions + .
⋆ Answer:
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+ = +
{

, |

|

|

}

= −1 +
{

0,−1 |
|

1
}

= −1 +
{

0 |
|

1
} (by simplest numbers)

= −1 + 1
2

= −1
2

Answer of exercise 3.2.28
Answer Not Provided

Answer of exercise 3.2.29
Answer Not Provided

Answer of exercise 3.2.30
Question:

What is the value of ? You may need to use the result from exercise
3.2.23 .

⋆ Answer:

=
{

0,
|

|

|

|

|

}

=
{

0,
{

0,−1 |
|

1, 0
}

|

|

|

1
}

=
{

0,
{

0 |
|

0
}

|

|

|

1
}

=
{

0, ∗ |
|

1
}

= 1
2
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Answer of exercise 3.2.31
Answer Not Provided

Answer of exercise 3.2.32
Question:

What is the value of this KONANE position: ?

⋆ Answer:

=

⎧

⎪

⎨

⎪

⎩

|

|

|

|

|

|

|

|

⎫

⎪

⎬

⎪

⎭

=
{

0 |
|

1
}

= 1
2

Answer of exercise 3.2.33
Answer Not Provided

Answer of exercise 3.2.34
Answer Not Provided

Answer of exercise 3.3.0
Question:

Rewrite { 2 |
|

0
} in the form a ± x.

⋆ Answer:
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Using the formula in the chapter,
{

2 |
|

0
}

= a ± x

= b + c
2

±
(

b − c
2

)

= 2
2
± 2 − 0

2
= 1 ± 1

Answer of exercise 3.3.1
Answer Not Provided

Answer of exercise 3.3.2
Question:

Rewrite { −100 |
|

−300
} in the form a ± x.

⋆ Answer:
Using the formula in the chapter,

{

−100 |
|

−300
}

= a ± x

= b + c
2

±
(

b − c
2

)

= −400
2

± 200
2

= −200 ± 100

Answer of exercise 3.3.3
Answer Not Provided

Answer of exercise 3.3.4
Question:

Rewrite the sum {

0 |
|

7
}

+
{

7 |
|

0
} as a single position of the form {

x |
|

y
}.
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⋆ Answer:

{

0 |
|

7
}

+
{

7 |
|

0
}

= 1 + 3.5 ± 3.5
= 4.5 ± 3.5
=
{

1 |
|

8
}

Answer of exercise 3.3.5
Answer Not Provided

Answer of exercise 3.3.6
Question:

Rewrite the sum {

2 |
|

5
}

+
{

5 |
|

2
} as a single position of the form {

x |
|

y
}.

⋆ Answer:

{

2 |
|

5
}

+
{

5 |
|

2
}

= 3 + 31
2
± 3
2

= 61
2
± 3
2

=
{

8 |
|

5
}

Answer of exercise 3.3.7
Answer Not Provided

Answer of exercise 3.3.8
Question:

Rewrite the sum {

−2 |
|

−100
}

+
{

−100 |
|

−2
} as a single position of the

form {

x |
|

y
}.

⋆ Answer:
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{

−2 |
|

−100
}

+
{

−100 |
|

−2
}

= −51 ± 49 − 3
= −54 ± 49
=
{

−5 |
|

−103
}

Answer of exercise 3.3.9
Answer Not Provided

Answer of exercise 3.3.10
Question:

Rewrite the sum G =
{

6 |
|

2
}

+
{

−2 |
|

−6
} as a sum of a number and

switches and then find o(G).
⋆ Answer:

G =
{

6 |
|

2
}

+
{

−2 |
|

−6
}

= 4 ± 2 + −4 ± 2
= 0 ± 2 ± 2
= 0

0 ∈  , so o(G) =  .

Answer of exercise 3.3.11
Answer Not Provided

Answer of exercise 3.3.12
Question:

Rewrite the sum G =
{

−1 |
|

−2
}

+
{

4 |
|

3
} as a sum of a number and

switches and then find o(G).
⋆ Answer:
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G =
{

−1 |
|

−2
}

+
{

4 |
|

3
}

= −1.5 ± 1
2
+ 3.5 ± 1

2
= 2 ± 1

2
± 1
2

= 2
∈ 

Answer of exercise 3.3.13
Answer Not Provided

Answer of exercise 3.3.14
Question:

Rewrite G = −2± 3± 1 without the ± symbol. (Hint: your position will have
the form

{

{

a |
|

b
}

|

|

|

{

c |
|

d
}

}

.)
⋆ Answer:

−2 ± 3 ± 1 =
{

1 ± 1 |
|

−5 ± 1
}

=
{

{

2 |
|

0
}

|

|

|

{

−4 |
|

−6
}

}

Answer of exercise 3.3.15
Answer Not Provided

Answer of exercise 3.3.16
Question:

Rewrite G = 21
2
± 4 ± 3 without the ± symbol.

⋆ Answer:
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21
2
± 4 ± 3 =

{

61
2
± 3

|

|

|

|

−11
2
± 3

}

=

{

{

91
2
|

|

|

|

31
2

}

|

|

|

|

|

{

11
2
|

|

|

|

−41
2

}

}

Answer of exercise 3.3.17
Answer Not Provided

Answer of exercise 3.3.18
Question:

Rewrite G =
{

{

12 |
|

6
}

|

|

|

{

4 |
|

−2
}

}

as a sum of two switches.
⋆ Answer:

{

{

12 |
|

6
}

|

|

|

{

4 |
|

−2
}

}

=
{

9 ± 3 |
|

1 ± 3
}

= 5 ± 4 ± 3

Answer of exercise 3.3.19
Answer Not Provided

Answer of exercise 3.3.20
Question:

Rewrite G =
{

{

4 |
|

3
}

|

|

|

{

2 |
|

1
}

}

as a sum of two switches.
⋆ Answer:

{

{

4 |
|

3
}

|

|

|

{

2 |
|

1
}

}

=
{

31
2
± 1
2
|

|

|

|

11
2
± 1
2

}

= 2 ± 11
2
± 1
2
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Answer of exercise 3.3.21
Answer Not Provided

Answer of exercise 3.3.22
Question:

Simplify G =
{

{

2 |
|

4
}

|

|

|

{

−2 |
|

0
}

}

to a switch or sum of switches.
⋆ Answer:

{

{

2 |
|

4
}

|

|

|

{

−2 |
|

0
}

}

=
{

3 |
|

−1
}

= 1 ± 2

Answer of exercise 3.3.23
Answer Not Provided

Answer of exercise 3.3.24
Question:

Simplify G =
{

{

14 |
|

50
}

|

|

|

{

4 |
|

100
}

}

to a switch or sum of switches.
⋆ Answer:

{

{

14 |
|

50
}

|

|

|

{

4 |
|

100
}

}

=
{

15 |
|

5
}

= 10 ± 5

Answer of exercise 3.3.25
Answer Not Provided

Answer of exercise 3.3.26
Answer Not Provided
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Answer of exercise 3.3.27
Question:
G =

{

{

7 |
|

5
}

|

|

|

{

−3 |
|

x
}

}

. Is it possible for G to be the sum of two
switches? If so, find x. If not, explain why not.

⋆ Answer:
In order for G to be the sum of two switches, the left and right options have to

be switches with the same heat. The left option, { 7 |
|

5
}

= 6 ± 1, so the right
must also have the form a ± 1. −3 − 1 = −4, so that side must be −4 ± 1. Then
G =

{

6 ± 1 |
|

−4 ± 1
}

= 1±5±1, which is a legitimate sum of switches. Thus,
{

−3 |
|

x
}

= −4 ± 1, meaning x = −5.

Answer of exercise 3.3.28
Answer Not Provided

Answer of exercise 3.3.29
Question:
G =

{

{

1 |
|

0
}

|

|

|

{

x |
|

−2
}

}

. Is it possible for G to be the sum of two
switches? If so, find x. If not, explain why not.

⋆ Answer:
In order for G to be the sum of two switches, the left and right options have to

be switches with the same heat. The left option, { 1 |
|

0
}

= 1
2
± 1

2
, so the right

must also have the form a± 1
2
. −2+ 1

2
= −11

2
, so that side must be −1 1

2
± 1
2
. Then

G =
{

1
2
± 1

2
|

|

|

−1 1
2
± 1

2

}

= − 1
2
± 1 ± 1

2
, which is a legitimate sum of switches.

Thus, { x |
|

−2
}

= −11
2
± 1

2
, meaning x = −1.

Answer of exercise 3.3.30
Answer Not Provided

Answer of exercise 3.3.31
Question:
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Simplify G =
{

{

11 |
|

15
}

|

|

|

{

7 |
|

15
}

}

+
{

{

|

|

−10
}

|

|

|

{

−20 |
|

−16
}

}

by expressing it as a sum of switches.
⋆ Answer:

G =
{

{

11 |
|

15
}

|

|

|

{

7 |
|

15
}

}

+
{

{

|

|

−10
}

|

|

|

{

−20 |
|

−16
}

}

=
{

12 |
|

8
}

+
{

−11 |
|

−17
}

= 10 ± 2 + −14 ± 3
= −4 ± 3 ± 2

Answer of exercise 3.3.32
Answer Not Provided

Answer of exercise 3.3.33
Answer Not Provided

Answer of exercise 3.3.34
Question:

What is the value of this KONANE position: ?

⋆ Answer:

=

⎧

⎪

⎨

⎪

⎩

|

|

|

|

|

|

|

|

⎫

⎪

⎬

⎪

⎭

=
{

1 |
|

−1
}

= ±1
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Answer of exercise 3.3.35
Answer Not Provided

Answer of exercise 3.3.36
Answer Not Provided

Answer of exercise 3.3.37
Answer Not Provided

Answer of exercise 3.3.38
Answer Not Provided

Answer of exercise 3.3.39
Question:

Use a direct proof to show that − ± x = ±x for any non-negative number x.
⋆ Answer:

− ± x = −{ x | −x }
= { − − x | −x }
= { x | −x }
= ±x

Answer of exercise 3.3.40
Answer Not Provided

Answer of exercise 3.3.41
Question:

Consider G =
{

{ w | x } ||
|

{

y |
|

z
}

}

where w, x, y, and z are all numbers.
Using your answer from exercise 3.3.17 , fill in the boxes below with comparison
operators to give four necessary and sufficient conditions for G to be the sum of
two switches:
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• w□ x□ y□ z and
• w − x□ y − z

⋆ Answer:
• w ≥ x ≥ y ≥ z and
• w − x = y − z

Answer of exercise 3.3.42
Answer Not Provided

Answer of exercise 3.5.0
Answer Not Provided

Answer of exercise 3.5.1
Answer Not Provided

Answer of exercise 3.5.2
Question:

Since ↑> 0we know thatG+ ↑> G for any gameG. So, in particular, ↑ + ↑>↑.
Prove that ↑ + ↑, denoted ⇑ is an infinitesimal.

⋆ Answer:
Proof. It suffices to show that 1∕2n− ⇑> 0 for any n ∈ ℕ+.

1∕2n− ⇑ = 1∕2n+ ⇓

= 1∕2n +
{

∗ |
|

0
}

+
{

∗ |
|

0
}

Note that if R moves one of the ↓’s to 0, then that would leave 1∕2n− ↑> 0. And
if they play on 1∕2n then the game will move to

1∕2n−1 +
{

∗ |
|

0
}

+
{

∗ |
|

0
}

,

to which L can respond with 1∕2n−1− ↑, which we’ve seen is in . Therefore
1∕2n− ⇑> 0.
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Answer of exercise 3.5.3
Answer Not Provided

Answer of exercise 3.5.4
Question:

Show that the game ⧾1+ ∗k is bigger than ∗k.
⋆ Answer:

⧾1+ ∗k− ∗k = ⧾1 > 0

Answer of exercise 3.5.5
Answer Not Provided

Answer of exercise 3.5.6
Question:

What is the value of the CLOBBER position ?
⋆ Answer:

R can move to 0 and L can move to , from which
R can move to 0 and L can move to , which has value ∗. So the original
position has value

{

{

∗ |
|

0
}

|

|

|

0
}

=
{

↓ |
|

0
}.

Answer of exercise 3.5.7
Answer Not Provided

Answer of exercise 3.5.8
Answer Not Provided

Answer of exercise 3.5.9
Answer Not Provided

Answer of exercise 3.5.10
Answer Not Provided
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Answer of exercise 4.1.0
Question:

Is the following impartial game tree a They-Love-Me-They-Love-Me-Not (TLMTLMN)
position? Find the outcome class and the value of the tree.

⋆ Answer:
This is not a TLMNTLMN position because not all possible game paths have

the same length parity. The leaf on the far left is two moves from the initial
position; the leaf to the right of that is a direct option from the start. The initial
position is in and has a value of ∗2 .

Answer of exercise 4.1.1
Answer Not Provided

Answer of exercise 4.1.2
Answer Not Provided

Answer of exercise 4.1.3
Answer Not Provided

Answer of exercise 4.1.4
Question:

What is the value of a BRUSSELS SPROUTS starting position with one node?
⋆ Answer:

k = 1, so the number of moves will be 5k− 2 = 5− 2 = 3. This is odd, so the
first player will win, meaning the game equals ∗.
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Answer of exercise 4.1.5
Answer Not Provided

Answer of exercise 4.1.6
Answer Not Provided

Answer of exercise 4.1.7
Answer Not Provided

Answer of exercise 4.1.8
Answer Not Provided

Answer of exercise 4.2.0
Question:

What is the outcome class of G = 5+ ⇑ + ∗6?
⋆ Answer:

G ∈ .
Answer of exercise 4.2.1

Answer Not Provided
Answer of exercise 4.2.2

Answer Not Provided
Answer of exercise 4.2.3

Question:
What is the outcome class of G = −10 ± 5?

⋆ Answer:
t = 5. Since this is less than − − 10 (t < −x), G ∈ .

Answer of exercise 4.2.4
Answer Not Provided
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Answer of exercise 4.2.5
Question:

What is the outcome class of G = 3 ± 3?
⋆ Answer:

t = 3. Since this is equal to 3 (t = x) and n is odd, G ∈ .

Answer of exercise 4.2.6
Answer Not Provided

Answer of exercise 4.2.7
Question:

What is the outcome class of G = ±6 ± 6?
⋆ Answer:

t = 6 − 6 = 0. Since both x and t are zero, G ∈  .

Answer of exercise 4.2.8
Answer Not Provided

Answer of exercise 4.2.9
Question:

What is the outcome class of G = −2 ± 7 ± 3?
⋆ Answer:

t = 7 − 3 = 4. Since this is greater than 2 (t > |x|), G ∈ .

Answer of exercise 4.2.10
Answer Not Provided

Answer of exercise 4.2.11
Question:

What is the outcome class of G = ±6 ± 3 ± 3?
⋆ Answer:

t = 6 − 3 + 3 = 6. Here x = 0, so t > x and G ∈ .
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Answer of exercise 4.2.12
Answer Not Provided

Answer of exercise 4.2.13
Question:

What is the outcome class of G = 7 ± 6 ± 5 ± 4 ± 3?
⋆ Answer:

t = 6 − 5 + 4 − 3 = 2, x = 7, and n is even. Here x > 0, and t < x so G ∈ .

Answer of exercise 4.2.14
Answer Not Provided

Answer of exercise 4.2.15
Answer Not Provided

Answer of exercise 4.2.16
Answer Not Provided

Answer of exercise 4.2.17
Question:

What is the outcome class of G = 1 ± 1+ ↑ + ∗?
⋆ Answer:

IfL goes first, they should play on the switch, resulting in a value of 2+ ↑ + ∗,
which is clearly in . If R goes first, after their turn, the game will have a value
of ↑ + ∗∈ . SinceL goes next, they will be able to win. Thus,L has a winning
strategy going both first and second, so G ∈ .

Answer of exercise 4.2.18
Question:

What is the outcome class of G = ±4 ± 4+ ↓?
⋆ Answer:

G =↓∈ .
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Answer of exercise 4.2.19
Answer Not Provided

Answer of exercise 4.2.20
Answer Not Provided

Answer of exercise 4.2.21
Question:

What is the outcome class of G = 4 ± 4+ ↓ + ∗?
⋆ Answer:

If L goes first, they will play on the switch, resulting in a value of 8+ ↓ + ∗,
which is clearly in . If R goes first, they will take the switch, so that it’s L’s
turn on ↓ + ∗, which is in . Since L goes next, they will be able to win. Thus,
L has a winning strategy going both first and second, so G ∈ .

Answer of exercise 4.2.22
Answer Not Provided

Answer of exercise 4.2.23
Answer Not Provided

Answer of exercise 4.2.24
Question:

What is the outcome class of G = 2 ± 7 ± 1+ ⇑ + ∗?
⋆ Answer:

If L goes first, after the switches, the game will have a value of 8+ ⇑ + ∗,
which is clearly in . If R goes first, L will complete the switches at a value of
−4+ ⇑ + ∗∈ . Both players win going first, so G ∈ .

Answer of exercise 4.2.25
Answer Not Provided
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Answer of exercise 4.2.26
Question:

What is the outcome class of G = ±4 ± 3+ ↓ + ∗8?
⋆ Answer:

With L going first, after two moves, the value will be 1+ ↓ + ∗ 8 ∈ . If
R goes first, then after two moves the value will be −1+ ↓ + ∗ 8 ∈ . Thus,
G ∈ .

Answer of exercise 4.2.27
Answer Not Provided

Answer of exercise 4.2.28
Answer Not Provided

Answer of exercise 4.2.29
Question:

What is the outcome class of G = ± ↑?
⋆ Answer:

G = ± ↑=
{

↑ |
|

↓
}. The first player will always win here, so G ∈ . (Note:

± ↑=∗.)
Answer of exercise 4.2.30

Answer Not Provided
Answer of exercise 4.3.0

Answer Not Provided
Answer of exercise 4.3.1

Question:
Consider G =

{

{

4 |
|

2
}

|

|

|

−2
}

. Find the left and right stops and the confu-
sion intervals of G, 2 × G, 3 × G, and 4 × G. Is this information enough to find
the mean value of G, m(G)? If so, find m(G). Additionally, find the tempera-
ture, t(G). (You do not need to show calculations of Ğt that reach the incorrect
temperature.)
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⋆ Answer:
In multiple copies of G, it’s better for R to play in G than in { 4 |

|

2
}. Thus:

• LS(G) = 2R, RS(G) = −2R, so the confusion interval of G is: [−2, 2).
• LS(2 × G) = 2L, RS(2 × G) = 0R, so the confusion interval of 2 × G is:
[0, 2].

• LS(3 × G) = 4L, RS(3 × G) = 0L, so the confusion interval of 3 × G is:
(0, 4].

• LS(4 × G) = 2R, RS(4 × G) = 2L, so the confusion interval of 4 × G is:
(2, 2).

Since the interval converges, m(G) = LS(4 × G)∕4 = 1∕2.
The correct temperature is t = 5∕2:

Ğ5∕2 =
{

̆{

4 |
|

2
}

5∕2 − 5∕2
|

|

|

|

−2 + 5∕2
}

=
{

{

4 − 5∕2 |
|

2 + 5∕2
}

− 5∕2 ||
|

1∕2
}

=
{

{

3∕2 |
|

9∕2
}

− 5∕2 ||
|

1∕2
}

=
{

2 − 5∕2 |
|

1∕2
}

=
{

−1∕2 |
|

1∕2
}

= 0

Ğ5∕2 is a number, so the stops are equal. They’re also inside the confusion
interval of [−2, 2), so the temperature is 5∕2.

Answer of exercise 4.3.2
Answer Not Provided

Answer of exercise 4.3.3
Question:
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Consider G =
{

100 ||
|

{

−10 |
|

−20
}

}

. Find the left and right stops and the
confusion intervals of G, 2 × G, 3 × G, and 4 × G. Is this information enough
to find the mean value of G, m(G)? If so, find m(G). Additionally, find the
temperature, t(G). (You do not need to show calculations of Ğt that reach the
incorrect temperature.)

⋆ Answer:
In multiple copies of G, it’s better for L to play in G than in {

−10 |
|

−20
}.

Thus:
• LS(G) = 100L,RS(G) = −10L, so the confusion interval ofG is: (−10, 100].
• LS(2 × G) = 90L, RS(2 × G) = 80R, so the confusion interval of 2 × G

is: [80, 90].
• LS(3 × G) = 180R, RS(3 × G) = 70R, so the confusion interval of 3 × G

is: [70, 180).
• LS(4 ×G) = 170R, RS(4 ×G) = 170L, so the confusion interval of 4 ×Gis: (170, 170).
Since the interval converges, m(G) = LS(4 × G)∕4 = 170∕4 = 42 + 1∕2.
It may take a couple tries, but the correct temperature is 50:

Ğ50 =
{

100 − 50
|

|

|

|

̆{

−10 |
|

−20
}

50 + 50
}

=
{

50 ||
|

{

−10 − 50 |
|

−20 + 50
}

+ 50
}

=
{

50 ||
|

{

−60 |
|

30
}

+ 50
}

=
{

50 |
|

0 + 50
}

= 50+ ∗

The stops are both 50, which is within the confusion interval of (−10, 100].
t(G) = 50.

Note: In a prior version of this text, the temperature was incorrectly calculated
to be 115∕2.
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Answer of exercise 4.3.4

Answer Not Provided

Answer of exercise 4.3.5

Question:
Consider G =

{

2 ||
|

{

0 |
|

−2
}

}

. Find the left and right stops and the confu-
sion intervals of G, 2 × G, 3 × G, and 4 × G. Is this information enough to find
the mean value of G, m(G)? If so, find m(G). Additionally, find the tempera-
ture, t(G). (You do not need to show calculations of Ğt that reach the incorrect
temperature.)

⋆ Answer:
In multiple copies of G, it’s better for L to play in G than in { 0 |

|

−2
}. Thus:

• LS(G) = 2L, RS(G) = 0L, so the confusion interval of G is: (0, 2].

• LS(2 × G) = 2L, RS(2 × G) = 0R, so the confusion interval of 2 × G is:
[0, 2].

• LS(3 × G) = 2R, RS(3 × G) = 0R, so the confusion interval of 3 × G is:
[0, 2).

• LS(4 × G) = 2R, RS(4 × G) = 2L, so the confusion interval of 4 × G is:
(2, 2).

Since the interval converges, m(G) = LS(4 × G)∕4 = 2∕4 = 1∕2.
It may take a couple tries, but the correct temperature is 3∕2:

349



C. Answers to Exercises

Ğ3∕2 =
{

2 − 3
2
|

|

|

|

̆{

0 |
|

−2
}

3∕2 +
3
2

}

=

{

1∕2
|

|

|

|

|

{

0 − 3
2
|

|

|

|

−2 + 3
2

}

+ 3∕2

}

=
{

1∕2 ||
|

{

−3∕2 |
|

−1∕2
}

+ 3∕2
}

=
{

1∕2 |
|

−1 + 3∕2
}

=
{

1∕2 |
|

1∕2
}

= 1∕2+ ∗

The stops are both 1∕2, which is within the confusion interval of (0, 2]. t(G) =
3∕2.

Answer of exercise 4.3.6
Answer Not Provided

Answer of exercise 4.3.7
Question:

Consider G =
{

{

7 |
|

0
}

|

|

|

−5
}

. Find the left and right stops and the confu-
sion intervals of G, 2 × G, 3 × G, and 4 × G. Determine m(G) from the limit of
the stops of n × G, then find t(G).

⋆ Answer:
In multiple copies of G, it’s better for R to play in {

7 |
|

0
} than in another

copy of G. Thus:
• LS(G) = 0R, RS(G) = −5R, so the confusion interval of G is: [−5, 0).
• LS(2 ×G) = 0R, RS(2 ×G) = −5R, so the confusion interval of 2 ×G is:
[−5, 0).

• LS(3 ×G) = 0R, RS(3 ×G) = −5R, so the confusion interval of 3 ×G is:
[−5, 0).
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• LS(4 ×G) = 0R, RS(4 ×G) = −5R, so the confusion interval of 4 ×G is:
[−5, 0).

The interval does not seem to converge after a finite number of iterations. In
general, because R will always play in {

7 |
|

0
} instead of another copy of G,

LS(n × G) will always equal (0n)R = 0R and RS(n × G) will always be (−5 +
0(n−1))R = −5R. The limits as n→ ∞ of both must equal, so we can use either:

m(G) = lim
n→∞

LS(n × G)
n

= lim
n→∞

0

= 0, and
t(G) = max(LS(G) − m(G), m(G) − RS(G))

= max
(

0 − 0, 0 − −5
)

= max
(

0, 5
)

= 5

Answer of exercise 4.3.8
Answer Not Provided

Answer of exercise 4.3.9
Question:

Consider G =
{

{

−10 |
|

−20
}

|

|

|

−25
}

. Find the left and right stops and the
confusion intervals ofG, 2×G, 3×G, and 4×G. Determine m(G) from the limit
of the stops of n × G, then find t(G).

⋆ Answer:
In multiple copies of G, it’s better for R to play in {

−10 |
|

−20
} than in an-

other copy of G. Thus:
• LS(G) = −20R,RS(G) = −25R, so the confusion interval ofG is: [−25,−20).
• LS(2×G) = −40R,RS(2×G) = −45R, so the confusion interval of 2×Gis: [−45,−40).
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C. Answers to Exercises

• LS(3×G) = −60R,RS(3×G) = −65R, so the confusion interval of 3×Gis: [−65,−60).
• LS(4×G) = −80R,RS(4×G) = −85R, so the confusion interval of 4×Gis: [−85,−80).
The interval does not seem to converge after a finite number of iterations. In

general, because R will always play in { −10 |
|

−20
} instead of another copy of

G, LS(n ×G) will always equal (−20n)R and RS(n ×G) will always be (−25 −
20(n − 1))R = (−20n − 5)R. The limits as n → ∞ of both must equal, so we can
use either:

m(G) = lim
n→∞

LS(n × G)
n

= lim
n→∞

−20n
n

= lim
n→∞

−20

= −20, and
t(G) = max(LS(G) − m(G), m(G) − RS(G))

= max
(

−20 − −20,−20 − −25
)

= max
(

0, 5
)

= 5

Answer of exercise 4.3.10
Answer Not Provided

Answer of exercise 4.3.11
Question:

Consider G =
{

{

10 |
|

9
}

|

|

|

{

2 |
|

0
}

}

. Use the tactics we learned to find
m(G) and the temperature of t(G). Make sure you explain the optimal strategies
each player uses while describing the stops!

⋆ Answer:
In multiple copies of G, it’s better for both players to play in G than in the

individual components. Thus:

352



• LS(G) = 9R, RS(G) = 2L, so the confusion interval of G is: (2, 9).
• LS(2 × G) = 11R, RS(2 × G) = 11L, so the confusion interval of 2 × G

is: (11, 11).
We’ve already converged at n = 2, so m(G) = LS(2 × G)∕2 = 11∕2 = 5 + 1

2
. Then,

t(G) = max(LS(G) − m(G), m(G) − RS(G))

= max

(

9 −
(

5 + 1
2

)

, 5 + 1
2
− 2

)

= max
(

3 + 1
2
, 3 + 1

2

)

= 3 + 1
2

Answer of exercise 4.3.12
Answer Not Provided

Answer of exercise 4.3.13
Question:

Consider G =
{

{

5 |
|

3
}

|

|

|

{

2 |
|

1
}

}

. Use the tactics we learned to find
m(G) and the temperature of t(G). Make sure you explain the optimal strategies
each player uses while describing the stops!

⋆ Answer:
LetH =

{

5 |
|

3
}

= 4 ± 1 and J = {

2 |
|

1
}

= 1 + 1
2
± 1

2
. In multiple copies

of G,H , and J :
• Both players will prefer to play inH before J , as it is a switch with higher

temperature.
• L will choose to play on G overH , as RS(2 ×H) = 8 > 7 = RS(5 +G).
• R has no preference between playing onG orH , asLS(H+J ) = LS(G+
3) = 6. Thus, in our analysis, we will presume that they play on G when
given the choice.
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C. Answers to Exercises

Thus, overall, both players will choose to play on G first, thenH , then J .

• LS(G) = 3R, RS(G) = 2L, so the confusion interval of G is: (2, 3).
• LS(2 × G) = 6R, RS(2 × G) = 5L, so the confusion interval of 2 × G is:
(5, 6).

• LS(3 × G) = 9R, RS(3 × G) = 8L, so the confusion interval of 3 × G is:
(8, 9).

The interval does not seem to converge after a finite number of iterations. In
general, because of the play strategies explained above, LS(n × G) will always
equal 3nR. The limits as n → ∞ of both must equal, so we can use the left one
to find m(G):

m(G) = lim
n→∞

LS(n × G)
n

= lim
n→∞

3n
n

= lim
n→∞

3

= 3, and
t(G) = max(LS(G) − m(G), m(G) − RS(G))

= max
(

3 − 3, 3 − 2
)

= max
(

0, 1
)

= 1

Answer of exercise 4.3.14
Answer Not Provided

Answer of exercise 4.4.0
Answer Not Provided
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Answer of exercise 4.4.1
Question:

Determine the winner on an empty HEX board of height 2 and width n.
⋆ Answer:

If n is 1 then it’s an immediate win forL. If n = 2 a simple case analysis shows
that the first player can win. If n > 2 then R will win.

Answer of exercise 4.4.2
Answer Not Provided

Answer of exercise 4.4.3
Answer Not Provided

Answer of exercise 4.4.4
Question:

Using the above result, show that TIC-TAC-TOE always ends in a tie when
played perfectly by both players.

⋆ Answer:
By the above, an empty board is not in  . A case analysis on the three distinct

possible first moves - center, center-side, and corner - shows responses of corner,
center, and center, respectively, to prevent a first player win. Thus the game is
not in  , either. Thus, it should end in a draw.

Answer of exercise 4.4.5
Answer Not Provided

Answer of exercise 5.1.0
Question:

How many 6 character license plates are possible in which the first three char-
acters are letters and the last three are digits?

⋆ Answer:
263 ⋅ 103 = 17576000
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Answer of exercise 5.1.1
Answer Not Provided

Answer of exercise 5.1.2
Answer Not Provided

Answer of exercise 5.1.3
Question:

Which is a stronger password? Justify.
1. 8 to 10 characters, including uppercase letters, lowercase letters, digits, and
32 other symbols, or

2. Any three to four 4 letter words, of which there are 3996 in the English
language

⋆ Answer:
1. Using 26+ 26+ 10+ 32 = 94 symbols for 8, 9, or 10 characters allows for
948 + 949 + 9410 ≈ 5.4 × 1019 possible passwords.

2. Using three or four out of 3996 possible words yields 39963 + 39964 ≈
2.6 × 1014 passwords.

So the shorter password is stronger.

Answer of exercise 5.1.4
Answer Not Provided

Answer of exercise 5.1.5
Question:

How many distinct flushes are possible?
⋆ Answer:

First we choose a suit, then 7 cards from that suit. (4
1

)(13
7

)

= 6864
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Answer of exercise 5.1.6
Answer Not Provided

Answer of exercise 5.1.7
Question:

How many ways could you get three of one rank and four of another?
⋆ Answer:

Choose one rank for the three, and another for the four. 13(4
3

)

12
(4
4

)

= 624

Answer of exercise 5.1.8
Answer Not Provided

Answer of exercise 5.1.9
Question:

Use the Inclusion/Exclusion Principle to determine howmany positive integers
less than or equal to 50 are a multiple of 2, 3, or 5.

⋆ Answer:
Call the sets A,B, C respectively. |A| = 25, |B| = 16, |C| = 10, A ∩ B

is the set of multiple of 6, so |A ∩ B| = 8, |A ∩ C| = 5, |B ∩ C| = 3, and
|A ∩ B ∩ C| = 1 since the only multiple of all three of the primes is 30. So
|A ∪ B ∪ C| = 25 + 16 + 10 − 8 − 5 − 3 + 1 = 36.

Answer of exercise 5.1.11
Answer Not Provided

Answer of exercise 5.1.11
Answer Not Provided
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