The purpose of this project is to give you experience with both top-down design and efficient coding practices that take advantage of things with similar structures.


Tasks

The result of this assignment will be similar to project 3. You'll create a scene that is a collection of complex objects. The complex objects will all be collections of Zelle graphics primitives and have the same organization as the steam plant you created in lab. Each complex object will have a function that initializes it and any complex object that changes will have a function that animates it.

The big difference from project 3 is that your scene can be animated, with objects moving or changing colors.

  1. Think about a scene you want to create. Design the scene on paper as a collection of complex objects like buildings, streets, stoplights, and cars. Keep it simple. Come up with at least 2 complex objects of your own that you want to create for your scene. At least one of them will need to animate in some way. Animation can involve motion or changing color.

    For each of the complex objects, create a new init function in multi_shape.py. For the steam plant we created steam_init. Follow the same convention for your other complex objects. For a stoplight, for example, create stoplight_init.

    The init function should always take an x, y, and scale, which you should use just as in project 3 so that the object can be placed anywhere at any scale. The init function should return a list of the primitive objects that make up the complex object, just like we did with the steam_init function.

    If your complex object should animate, create an animation function for the complex object. Use the same naming scheme, putting a _animate after the object's name. We created steam_animate for the steam plant. You would create stoplight_animate for a stoplight.

    You need to animate at least one of your new complex objects, even if it means just changing colors. The animate function should take in at least three parameters: the list of objects in the shape, the frame number, and the window, just like our steam_animate function. You can give the animate function any number of other parameters necessary for it to work properly. For example, you may want to include the scale used to create the image, so that movement can scale with the size of the shape.

    For each complex object you create, make a test function in multi_shape.py, just like we did with test_steam. The test function should create a window, create multiple versions of the complex object, and then wait for a mouse click to quit. If your animate function does something interesting, test that out as well.

    Include a small picture for each complex object in your writeup.

  2. Make a file scene.py and import your multi_shape package, the graphics package, and the time package. This file should have at least a main function (you can create other functions as you see fit to organize the code).

    The main function should initialize the complex objects in the scene and draw them. It should then execute a loop and animate the complex objects that change (i.e. the ones with animate functions). It will be similar to the lab6test.py main function from lab. Note that in lab6test.py, we put the steam plant complex objects in a list. You may want to use lists if you have multiple copies of the same object. But if you have one copy of each type of object, then you may want one variable for each object. The important thing is to make your code both succinct and readable.

    Do something creative within this framework.

    Include several pictures of your scene animating in your writeup.

Note, you can use the time.sleep() function to make your animation slow enough that you can do a screen capture on each frame. If you do that, then you can create an animated gif on the lab machines. Use the following command inside the directory where your screen shots are saved:

$ convert -delay 60 *.png myanimation.gif

The file myanimation.gif will be an animated gif that you can put on a web page.

Alternatively, you can also create movies of your screen on the lab machines using Quicktime.


Extensions

Each assignment will have a set of suggested extensions. The required tasks constitute about 85% of the assignment, and if you do only the required tasks and do them well you will earn a B+. To earn a higher grade, you need to undertake one or more extensions. The difficulty and quality of the extension or extensions will determine your final grade for the assignment. One complex extension, done well, or 2-3 simple extensions are typical.


Writeup and Hand-In

Before handing in your code, double check that it is well-styled:

Make a new wiki page for your assignment. Put the label cs151s14project6 on the page. Each of you needs to make your own writeup.

In addition to making the wiki page writeup, put the python files you wrote on the Academics server in your private handin directory.

Colby Wiki

In general, your writeup should follow the outline below.