Combinatorial Games Crash Course

Kyle Burke

Plymouth State
April 5, 2019

Combinatorial Games

Combinatorial Games:

- Two competing players ("Left", "Right") alternate turns
- No randomness
- No hidden information
- If you can't move, you lose. ("Normal" play)

We can describe games based on the moves available to each player.

Cram

Cram:

- Start with an empty checkerboard.
- Turn: play a domino on any two empty adjacent squares.

Quick playthrough:

Options

We can abstractly describe each position by the options, positions that can be moved to.

Game Trees

Adding Games

Games break into pieces, which we want to treat independently.

Adding Games

So, $G+H$ means on their turn, the player chooses an option from either G or H (not both).

Rigor: $G=\left\{G_{1}, \ldots, G_{n}\right\}$ and $H=\left\{H_{1}, \ldots, H_{m}\right\}$, then
$G+H=\left\{G_{1}+H, \ldots, G_{n}+H, H_{1}+G, \ldots, H_{m}+G\right\}$
Most of our definitions are going to revolve around how addition works.

Another game: Nim

Nim:

- Heap(s) of tokens/sticks
- Turn: remove some sticks from any one heap.

Position (as list): [1, 2, 3]
Options of [1, 2, 3]:

- (Take 1 from first) [2, 3],
- (Take 1 from second) [1, 1, 3],
- $[1,3]$,
- $[1,2,2]$,
- $[1,2,1]$,
- $[1,2]$
$[1,2,3]=\{[2,3],[1,1,3],[1,3],[1,2,2],[1,2,1],[1,2]\}$

Zero and *

\{ \} seems important. Let's give it a name.

$$
\}:=0
$$

Let's do $\{0\}$ too:

$$
\{0\}:=*
$$

Equivalence

What happens when we add 0 to another game, G ?
Same as G
Equivalence in general? $G=H$?
$G=H \Leftrightarrow \forall X: G+X$ has the same outcome as $H+X$
What do we mean by outcome?

Outcome Classes

Outcome class: set of games where the same player always has a winning strategy.

Who wins on 0? ("Next" or "Previous" player?) A: Previous
Let's call the set of these positions \mathcal{P}, "Zero".
Bonus: $\forall X \in \mathcal{P}: X=0$

Outcome Classes

Who wins on $*$? A: Next player!
Let's call these positions \mathcal{N}, "Fuzzy".
What's true of all single Nim heaps with at least one stick?
They're all in fuzzy!
Not all fuzzy games are equal to some single value, so they're... "fuzzy".

Fuzzy + Fuzzy
$\mathrm{B} \in \mathcal{N}$
What about $\square+\square$?
Sum $\in \mathcal{P}$, so it equals 0 .

Fuzzy + Fuzzy

$\square \in \mathcal{N}, \varpi \in \mathcal{N}$
 What about $\square+\square$?

Still \mathcal{N}
Winning Move: $\square+\square$

Outcome class defined by existence of a strategy. Not every move will be winning.

Different Fuzzy Values: Cram

Can win, but also has more power...
Let's call this $* 2$.

Different Fuzzy Values: Nim

What's the value of the single Nim heap: [2]?

$$
\begin{aligned}
{[2] } & =\{[],[1]\} \\
& =\{0, * * \\
& =* 2
\end{aligned}
$$

What's the value of [3]?

$$
\begin{aligned}
{[3] } & =\{[],[1],[2]\} \\
& =\{0, *, * 2\} \\
& =* 3
\end{aligned}
$$

True for all single Nim heaps! $[k]=* k$

Nimbers!

More generally, $* k=\{* 0, * 1, * 2, * 3, \ldots, *(k-1)\}$
" $* k$ has all nimbers 0 through $\mathrm{k}-1$, but not k "
Note: it doesn't matter whether there are nimbers above k.
"Minimal Excluded Value" (mex)

$$
\operatorname{mex}(S \subset(\mathbb{N} \cup\{0\}))=\min _{x \notin S}(\mathbb{N})
$$

Cram Nimbers

$$
\begin{aligned}
& \square=\{ \}=0 \\
& \square=\{0\}=* \\
& \square=\{0,0\}=\{0\}=* \\
& \square=\{*, 0, *\}=* 2 \\
& \square \square=\left\{\begin{array}{l}
\square \\
\square \square=\{2, * 0\}=* 3 \\
\square \square=\{0, * 2,0\}=* \\
\square \square=\{* 3,0, * 3,0\}=*
\end{array}\right. \\
& \square \square \square, *, *\}=0
\end{aligned}
$$

Adding Nimbers

Bonus: summing nimbers is easy!
$* k+* m=*(k \oplus m)$

$$
\begin{aligned}
& * 6+* 5=*(110 \oplus 101) \\
& 110 \\
&=\frac{\oplus 101}{011} \\
&=\quad * 3
\end{aligned}
$$

- $* 8+* 7=* 15$
- $*+*=0 . \quad * k+* k=0$
- $* 10+* 13=* 7$

Cram Nimbers

$$
\begin{aligned}
& \square=* \\
& \square=* \\
& \square=* 2 \\
& \square=\{*, *, *, *\}=0 \\
& \square=\{* 2, *, 0\}=* 3 \\
& \square=\{0, * 2,0\}=* \\
& \square \square=\{* 3,0, * 3,0\}=*
\end{aligned}
$$

Impartial vs Partisan

So far both players have always had the same moves. ("Impartial games")

Nimbers cover all values for impartial games.
Different: "Partisan games". Player identity matters!
Left vs Right: Blue vs Red.

- New outcome classes!
- New representation!
- New values!

Domineering

Partisan Outcome Classes

Previously...

- \mathcal{P} : Prevous player wins, "Zero"
- \mathcal{N} : Next player wins, "Fuzzy"

New possibilities:

- \mathcal{L} : Left wins, "Positive"
- \mathcal{R} : Right wins, "Negative"

Notation: $o(G)=$ outcome class of G

Domineering Outcomes

$\square \in \mathcal{P}$

$\square \in \mathcal{L}$
$\square \in \mathcal{R}$

1 and 2

"One move for Left"

"Two moves for Left"

Partisan Representations

\{ Left's options | Right's options \}

- $0=\{\mid\}$
- $*=\{0 \mid 0\}$
- $* 2=\{0, * \mid 0, *\}$
- etc...

What happens if the two sides aren't the same?

Partisan Representations

\{ Left's options | Right's options \}

We'd really like to drop that 0 inside of $2 \ldots$
Intuition: $0<1$, so we can remove the 0 option, because Left will always choose 1 instead. How can we define $<$?

Comparing Games

$G<H$ if Left never prefers G to H
Never? In the context of other games, X

- $G \leq H$ if Left wins on $G+X \Rightarrow$ Left wins on $H+X$
- Recall: $G=H$ if $\forall X: o(G+X)=o(H+X)$
- So: $G<H$ if $G \leq H$ and $\exists X: o(G+X) \neq \mathcal{L}=o(H+X)$
$0<1$ and $*<1$
- $G \| H$ if $G \nsupseteq H$ and $G \npreceq H$

$$
0 \| * \text { and } 0 \| * 2
$$

Dominated Moves \& Integers

$\{0,1 \mid \cdots\}=\{1 \mid \cdots\}$
$\{\cdots \mid *, 1\}=\{\cdots \mid *\}$
$\{1 \mid\}=2$
$\forall k \in \mathbb{N}$:

- $\{k \mid\}=k+1$
- $\{\mid-k\}=-k-1$

Negatives

What's the outcome class of $1+-1$?

$1+-1 \in \mathcal{P}$
In general,

$$
\begin{aligned}
-G & =-\left\{L_{1}, \ldots, L_{n} \mid R_{1}, \ldots, R_{m}\right\} \\
& =\left\{-R_{1}, \ldots,-R_{m} \mid-L_{1}, \ldots,-L_{n}\right\} \\
-(k+1) & =-\{k \mid\} \\
& =\{\mid-k\} \\
& =-k-1
\end{aligned}
$$

Domineering Negatives

In Domineering, just reflect and switch colors!

Domineering Halves

What's this sum?

So.. $\square+\square=-1$
What about this?

Same thing!

Domineering Halves

What about this?

$$
\square+\square+\square \neq 0
$$

so $\boldsymbol{m}+\boldsymbol{m} \neq-1$

Only one of these is $-1 / 2 \ldots$

Domineering Halves

Look at the outcome classes!

Two times either one is 1

Simplest Numbers

$\square=\{0 \mid 1\}=1 / 2$
Simplest numbers!
If $m<n$ (both numbers), then $\{m \mid n\}=k$, where:

- If there is any integer strictly between m and n, (i.e., $k \in(m, n))$ then k is the one with smallest absolute value.
- Otherwise,

$$
k=\frac{a}{2^{b}}
$$

where $m<k<n$ and $b>0$ is minimal.

Simplest Numbers

Examples!

- $\{0 \mid 5\}=1$
- $\{-99 \mid 5\}=0$
- $\{99 \mid 103\}=100$
- $\{0 \mid 1\}=1 / 2$
- $\{3 / 4 \mid 1\}=7 / 8$

What about this?

Switches

$\square=\{1 \mid-1\} \neq 0$
In general, $\pm k=\{k \mid-k\}$

- Not surreal
- "Hot" games
- $*= \pm 0$
- $\{6 \mid 0\}=3+\{3 \mid-3\}=3 \pm 3$
- Sums possible! E.g. $2 \pm 6 \pm 3 \pm 2$

Infinitesimals

$\uparrow=\{0 \mid *\}$

- $\in \mathcal{L}$
- Smaller than any positive number!
- "Dicot" games
- Even smaller: Tinys and Minys!

So much more!

"Math":

- Which values from which rulesets?
- Misere Play, Scoring Games
- Other Sums
"Computer Science":
- Computational Complexity
- AI

Thank you!

