Combinatorial Games Crash Course

Kyle Burke

Plymouth State

April 5, 2019

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Combinatorial Games

Combinatorial Games:

- Two competing players ("Left", "Right") alternate turns
- No randomness
- No hidden information
- If you can't move, you lose. ("Normal" play)

We can describe games based on the moves available to each player.

Cram

Cram:

Start with an empty checkerboard.

Turn: play a domino on any two empty adjacent squares.
 Quick playthrough:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Options

We can abstractly describe each position by the *options*, positions that can be moved to.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Game Trees

Adding Games

Games break into pieces, which we want to treat independently.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Adding Games

So, G + H means on their turn, the player chooses an option from either G or H (not both).

Rigor: $G = \{G_1, \ldots, G_n\}$ and $H = \{H_1, \ldots, H_m\}$, then

$$G + H = \{G_1 + H, \dots, G_n + H, H_1 + G, \dots, H_m + G\}$$

Most of our definitions are going to revolve around how addition works.

Another game: Nim

Nim:

Heap(s) of tokens/sticks Turn: remove some sticks from any one heap. Position (as list): [1, 2, 3] Options of [1, 2, 3]: (Take 1 from first) [2, 3], (Take 1 from second) [1, 1, 3], ► [1, 3], ▶ [1, 2, 2], ▶ [1, 2, 1], ▶ [1, 2] $[1, 2, 3] = \{ [2, 3], [1, 1, 3], [1, 3], [1, 2, 2], [1, 2, 1], [1, 2] \}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Zero and *

 $\{\ \}$ seems important. Let's give it a name.

Let's do $\{0\}$ too:

$$\{0\} := *$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Equivalence

What happens when we add 0 to another game, G?

Same as G

Equivalence in general? G = H?

 $G = H \Leftrightarrow \forall X : G + X$ has the same outcome as H + X

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

What do we mean by *outcome*?

Outcome Classes

Outcome class: set of games where the same player always has a winning strategy.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Who wins on 0? ("Next" or "Previous" player?) A: Previous

Let's call the set of these positions ${\mathcal P}$, "Zero".

Bonus: $\forall X \in \mathcal{P} : X = 0$

Outcome Classes

Who wins on *? A: Next player!

Let's call these positions ${\cal N}$, "Fuzzy".

What's true of all single Nim heaps with at least one stick?

They're all in fuzzy!

Not all fuzzy games are equal to some single value, so they're... "fuzzy".

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$\begin{array}{c} \blacksquare \in \mathcal{N} \\ \\ \text{What about } \blacksquare + \blacksquare ? \\ \text{Sum } \in \mathcal{P}, \text{ so it equals } 0. \end{array} \end{array}$

Fuzzy + Fuzzy

Outcome class defined by *existence* of a strategy. Not every move will be winning.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Different Fuzzy Values: Cram

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Can win, but also has more power...

Let's call this *2.

Different Fuzzy Values: Nim

What's the value of the single Nim heap: [2]?

$$[2] = \{ [], [1] \} \\ = \{ 0, * \} \\ = *2$$

What's the value of [3]?

$$[3] = \{ [], [1], [2] \} \\ = \{ 0, *, *2 \} \\ = *3$$

True for all single Nim heaps! [k] = *k

Nimbers!

More generally, $*k = \{*0, *1, *2, *3, \dots, *(k-1)\}$

"*k has all nimbers 0 through k-1, but not k" Note: it doesn't matter whether there are nimbers above k. "Minimal Excluded Value" (mex)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\mathsf{mex}(S \subset (\mathbb{N} \cup \{0\})) = \mathsf{min}_{x \notin S}(\mathbb{N})$

Cram Nimbers

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

Adding Nimbers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Bonus: summing nimbers is easy!

 $*k + *m = *(k \oplus m)$ $*6 + *5 = *(110 \oplus 101)$ 110 \oplus 101 011 == *3 ▶ *8 + *7 = *15

Cram Nimbers

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Impartial vs Partisan

So far both players have always had the same moves. ("Impartial games")

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Nimbers cover all values for impartial games.

Different: "Partisan games". Player identity matters!

Left vs Right: Blue vs Red.

- New outcome classes!
- New representation!
- New values!

Domineering

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Partisan Outcome Classes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Previously...

P: Prevous player wins, "Zero"

► N: Next player wins, "Fuzzy"

New possibilities:

► *L*: Left wins, "Positive"

► *R*: Right wins, "Negative"

Notation: o(G) =outcome class of G

Domineering Outcomes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

1 and 2

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ◆□◆

Partisan Representations

{ Left's options | Right's options }
•
$$0 = \{ | \}$$

• $* = \{0 | 0\}$
• $*2 = \{0, * | 0, *\}$
• etc...
What happens if the two sides aren't the same?

Partisan Representations

{ Left's options | Right's options }

$$= 1 = \{0 \mid \}$$

$$= 2 = \{1, 0 \mid \}$$

We'd really like to drop that 0 inside of 2...

Intuition: 0 < 1, so we can remove the 0 option, because Left will always choose 1 instead. How can we define <?

Comparing Games

G < H if Left never prefers G to H

Never? In the context of other games, X

- $G \leq H$ if Left wins on $G + X \Rightarrow$ Left wins on H + X
- Recall: G = H if $\forall X : o(G + X) = o(H + X)$
- ► So: G < H if $G \le H$ and $\exists X : o(G + X) \neq \mathcal{L} = o(H + X)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 $0 < 1 \mbox{ and } \ast < 1$

• $G \parallel H$ if $G \not\geq H$ and $G \not\leq H$ $0 \parallel *$ and $0 \parallel * 2$

Dominated Moves & Integers

 $\{0,1 \mid \dots \} = \{1 \mid \dots \}$ $\{\dots \mid *, 1\} = \{\dots \mid *\}$ $\{1 \mid \} = 2$ $\forall k \in \mathbb{N} :$ $\models \{k \mid \} = k + 1$ $\models \{\mid -k\} = -k - 1$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Negatives

What's the outcome class of 1 + -1?

 $1+-1\in \mathcal{P}$

In general,

$$-G = -\{L_1, \dots, L_n \mid R_1, \dots, R_m\} \\ = \{-R_1, \dots, -R_m \mid -L_1, \dots, -L_n\} \\ -(k+1) = -\{k \mid \} \\ = \{\mid -k\} \\ = -k-1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Domineering Negatives

In Domineering, just reflect and switch colors!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Domineering Halves

What's this sum?

What about this?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Same thing!

Domineering Halves

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

What about this? $\Box + \blacksquare = + \blacksquare = \neq 0$ so, $\blacksquare + \blacksquare \neq -1$

Only one of these is -1/2...

Domineering Halves

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Look at the outcome classes!

$$\stackrel{\bullet}{=} \in \mathcal{L} \qquad {}_{(=1/2)} \\ \stackrel{\bullet}{=} \in \mathcal{N} \qquad {}_{(=1/2+*)}$$

Two times either one is 1

Simplest Numbers

$$\blacksquare = \{0 \mid 1\} = 1/2$$

Simplest numbers!

If m < n (both numbers), then $\{m \mid n\} = k$, where:

- If there is any integer strictly between m and n, (i.e., k ∈ (m, n)) then k is the one with smallest absolute value.
- Otherwise,

$$k = \frac{a}{2^b}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where m < k < n and b > 0 is minimal.

Simplest Numbers

Examples!

{0 | 5} = 1
{-99 | 5} = 0
{99 | 103} = 100
{0 | 1} = 1/2
{3/4 | 1} = 7/8

What about this?

$$\square = \{1 \mid -1\}$$

No simplest number here!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Switches

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$\boxed{\qquad}=\{1\mid -1\} \neq 0$$

In general, $\pm k = \{k \mid -k\}$

- Not surreal
- "Hot" games
- ► * = ±0
- $\{6 \mid 0\} = 3 + \{3 \mid -3\} = 3 \pm 3$
- Sums possible! E.g. $2 \pm 6 \pm 3 \pm 2$

Infinitesimals

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$\uparrow=\{0\mid *\}$

- $\blacktriangleright \in \mathcal{L}$
- Smaller than any positive number!
- "Dicot" games
- Even smaller: Tinys and Minys!

So much more!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

"Math":

- Which values from which rulesets?
- Misere Play, Scoring Games
- Other Sums
- "Computer Science":
 - Computational Complexity
 - Al

Thank you!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●